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ABSTRACT 

Applications of Stochastic Modeling to 
Quanti tat ive Finance and Operations Management 

Kun Soo Park 

This thesis consists of four essays on applications of stochastic modeling to problems in the 

areas of quantitative finance and operations management. 

The first part contains two essays on quantitative finance, presented in Chapter 2 and 3. 

The essays develop stochastic process models designed to better understand the performance 

of hedge funds. Recently, the number of hedge funds and the amount of assets they manage 

have been increasing rapidly. However, hedge funds reveal relatively little about their 

performance, and, since hedge funds report their returns voluntarily, their performance 

data is limited and not clearly reliable. Thus, models of hedge fund performance that can 

be easily analyzed and fit to limited data are valuable. 

In Chapter 2, we propose and develop a new stochastic process model to solve a specific 

problem for hedge funds: quantifying the premium from extended hedge-fund lockups. A 

lockup period for a hedge fund is a time period after making the investment during which the 

investor cannot freely redeem his investment. Recently, lockup periods have been increasing 

from one year to multiple years. Then, for an investor in hedge funds, it is important to 

calculate the premium in compensation deserved for the restricted investment opportunities 

imposed by an extended lockup restriction. We model returns from an investment in hedge 

funds with a discrete-time Markov chain (DTMC). We use this model to calculate the 

premium from an extended lockup period. One key modeling feature is the statistical 

persistence in the quality of relative returns of hedge funds, that is, the tendency for a fund 

that generates relatively high (or low) returns in a period to continue generating relatively 

high (or low) returns again in the next period. By solving systems of equations, we fit the 

Markov chain transition probabilities to three directly observable hedge fund performance 
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measures from the limited data: the persistence of return, the variance of return and the 

hedge-fund death rate. This so-called "calibration" of a model is a common and time-tested 

strategy in the practical use of contingent claim models. We also quantify how the lockup 

premium depends on the model parameters and the lockup period. 

In Chapter 3, we extend the model just described: a stochastic-difference-equation is 

introduced to directly model the relative returns of a hedge fund. An important feature of 

the model is that for the relative returns of a hedge fund, the limiting distribution is easily 

analyzed. Just as in Chapter 2, we incorporate the persistence of returns in our modeling. 

Specifically, for the relative return Xn of a hedge fund in year n, we propose a stochastic-

difference-equation of the form Xn — AnXn-i + Bn where An represents persistence and Bn 

represents noise. This model is appealing because it involves relatively few parameters, can 

be analyzed, and can be fit to the limited and less reliable data reasonably well. We show 

that a simple model framework where An is constant and Bn is normal random variable 

provides a good fit for hedge funds with light return tails. We also show that the model 

within the same general framework can also be fit to the heavy-tail case successfully. 

The second part contains two essays on operations management, presented in Chapter 4 

and 5. These essays employ stochastic modeling to better understand operational decisions 

and behavior of firms in the business of procurement and supply chain management. In 

operations management, stochastic models are popular in modeling uncertainties in the 

demand of a customer or cost of a product. We study a procurement problem in operations 

management that interfaces with economics in Chapter 4 and a supply chain problem that 

interfaces with accounting in Chapter 5. 

In Chapter 4, we consider a procurement system where a buyer wants to procure a 

product from sellers who have random production costs. We especially study a procurement 

that combines both auctions and bargaining, a combination that has become increasingly 

popular recently. Although both auction and bargaining in procurement have been studied 

extensively in the both economics and operations management literature recently, research 

that combines auctions and bargaining is limited. We model and analyze a combined auction 

and bargaining procurement system where an auction is followed by bargaining between the 

buyer and the winning seller in the auction. For this auction-bargaining model, we find a 
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symmetric equilibrium bidding strategy for the sellers in a closed form. We also show that 

the buyer's expected profit in the combined procurement is higher than the profit in auction 

or bargaining only procurement. 

In Chapter 5, we study the impact of a transfer pricing scheme for tax purposes for 

intra-firm transactions in the supply chain of a multinational firm. Although the impact 

of transfer pricing has been studied in the cost accounting literature, a detailed impact of 

the transfer pricing method on operational decisions and divisional profits in a supply chain 

has not yet been explicitly studied in both the cost accounting and operations management 

literature. In this chapter, we consider a supply chain where a retailer sub-division of a 

multinational firm orders a product from a manufacturing sub-division of the firm through 

an intra-firm transaction and sells it to customers under random demands. Our analysis 

shows that the problem can be analyzed as a variant of well known price-setting newsvendor 

framework in operations management. We also study the efficiency of a supply chain under 

the two popular transfer pricing schemes for tax reporting and show how transfer pricing 

methods affect operational decisions and profits of a firm and its sub-divisions. 
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CHAPTER 1. INTRODUCTION 1 

Chapter 1 

Introduction 

This thesis consists of four essays on the application of stochastic modeling to problems 

in the areas of quantitative finance and operations management. In the first part of the 

thesis, we study problems in the area of quantitative finance, focusing on hedge funds. In 

the second part, we study problems in the area of operations management, with special 

attention to the intersections of operations management with economics and accounting. 

1.1 Contributions to Quantitative Finance 

A stochastic process model of hedge fund return process is useful for research and investment 

analysis purposes. However, hedge funds are usually not required to report their returns 

to any authorities. Due to this, it is hard to find reliable and accurate data on hedge-fund 

returns. Hence, a model of hedge-fund returns that can easily be fit to the data and be 

analyzed and applied is valuable in hedge-fund research. In Par t I, we propose stochastic 

process models that incorporate the persistence observed in hedge-fund returns. Persistence 

in returns is a tendency for a fund that generates relatively high (or low) returns in a period 

to continue generating relatively high (or low) returns again in the next period. We analyze 

hedge-fund returns data from the Tremont Advisory Shareholders Services (TASS) database 

over the period 2000 to 2005 and show that there exists a statistically significant degree 

of persistence in the annual relative returns of hedge funds. In this part of the thesis, we 

apply a discrete-time Markov chain (DTMC) that incorporates persistence to quantify the 
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CHAPTER 1. INTRODUCTION 2 

return premium for extended hedge-fund lockups in Chapter 2. In Chapter 3, we develop 

models based on a stochastic-difference-equation whose limiting distributions fit the same 

TASS data reasonably well. 

In Chapter 2, we study how to quantify the premium from extended hedge fund lockups. 

A lockup period in a hedge fund is a time period after making the investment during which 

the investor cannot freely redeem his investment. It is routine to have a one-year lockup 

period, but recently hedge funds have requested longer lockup periods. Since investors lose 

an opportunity to redeem their money and re-invest in other funds until a lockup period 

ends, they deserve a premium for tying up their money, and the problem of quantifying the 

premium from a lockup is an important problem in hedge-fund research. We estimate the 

premium for such extended lockups, taking the point of view of a manager of a fund of funds, 

who has to choose between two investments in similar funds in the same strategy category, 

the first having a one-year lockup and the second having an n-year lockup. Assuming 

that the manager will rebalance his portfolio of hedge funds on a yearly basis, we define 

the annual lockup premium as the difference between the expected rates of return from 

these investments. We develop a Markov chain model to estimate this lockup premium. 

By solving systems of equations, we fit the Markov chain transition probabilities to three 

directly observable hedge fund performance measures: the persistence of return, the variance 

of return and the hedge-fund death rate. We contribute by quantifying the way the lockup 

premium depends on these parameters and the lockup period. Data from the TASS database 

are used to estimate the persistence, which is found to be statistically significant. 

While Chapter 2 is focused on developing a stochastic process model to the lockup 

premium problem, Chapter 3 is devoted to developing a stochastic process model directly 

for the hedge-fund relative returns themselves. Despite the abundance of stochastic models 

for other securities like stocks, commodities and market indices, relatively few stochastic 

models have been developed for hedge funds. Since hedge-fund returns are reported only 

voluntarily by the funds, performance data of hedge funds are not only limited but also 

less reliable. In this chapter, we contribute by developing a stochastic-process model of the 

relative returns of a hedge fund. This model is appealing because it can involve relatively 

few parameters, can be analyzed, and can be fit to the limited and somewhat unreliable 
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data reasonably well. Specifically, we propose a stochastic difference equation of the form 

Xn = AnXn-\ + Bn to model the annual returns Xn of a hedge fund relative to other funds 

in the same strategy group in year n. We let {An} and {Bn} be independent sequences 

of independent and identically distributed random variables, allowing general distributions, 

with An and Bn independent of Xn-i, where E[Bn\ — 0. The key model parameters are 

the year-to-year persistence factor 7 = -E[An] and the noise variance a% = Var{Bn). The 

model was chosen primarily to capture the observed persistence, which ranges from 0.11 

to 0.49 across eleven different hedge-fund strategies, according to regression analysis. The 

constant-persistence normal-noise special case with An = 7 and Bn (and- thus Xn) normal 

provides a good fit for some strategies, but not for others, largely because in those other 

cases the observed relative-return distribution has a heavy tail. We show that the heavy-tail 

case can also be successfully modelled within the same general framework. The model is 

evaluated by comparing model predictions with observed values of (i) the relative-return 

distribution, (ii) the lag-1 auto-correlation and (iii) the hitting probabilities of high and low 

thresholds within the five-year period. 

1.2 Contributions to Operations Management 

In the second part of the thesis, we study problems in operations management area, with 

special attention to interfaces with economics and accounting. In operations management, 

stochastic modeling is popular in modeling uncertainties on customer demand or production 

cost. In part II, we model random production cost in procurement and random customer 

demand in supply chain and apply it to analyze the problems below. 

In Chapter 4, we study a profit optimization problem of a buyer in a procurement system. 

A procurement decision is one of the most important decision that a firm faces in managing 

its supply chain. It is involved with selecting suitable suppliers among many potential 

competing sellers and reducing the purchase cost. Both auctions and bargaining are popular 

in procurement in practice and they are also extensively studied in both the economics and 

operations management literatures. However, recently, auctions and bargaining are often 

combined in one procurement system, although research on this combined procurement 
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is relatively limited. In this paper, we consider a combined auction-bargaining model in 

a setting where a single buyer procures an indivisible good from one of many competing 

sellers. The procurement model that we analyze is a sequential model consisting of the 

auction phase followed by the bargaining phase. In the auction phase, the sellers submit 

bids, and the seller with the lowest bid is selected as the winning bidder. In the bargaining 

phase, the buyer audits the cost of the winning seller and then negotiates with him to 

determine the final price. For this auction-bargaining model, we contribute by finding a 

symmetric equilibrium bidding strategy for the sellers in a closed form, which is simple 

to understand and closely related to the classical results in the auction and bargaining 

literature. We also prove that the auction-bargaining model generates at least as much 

profit to the buyer as the standard auction or sequential bargaining model. 

In Chapter 5, we study a supply chain problem of a multinational firm, especially under 

a certain transfer pricing scheme for tax purposes for its intra-firm transaction. Transfer 

pricing refers to the pricing of an intra-firm transactions of an intermediate product or 

service. It has a significant impact on how the divisional performances are evaluated. Thus, 

transfer pricing is regulated by tax authorities who impose a set of pre-specified transfer 

pricing methods for tax purposes. Such regulations provide some flexibility to the firm's 

tax reporting practice, and the particular choice of the transfer pricing method can have 

a significant impact on the profits of the divisions and the entire firm. In this chapter, we 

contribute by studying how the transfer pricing for tax purposes affects operational decisions 

and the corresponding profits of a firm. We consider a firm consisting of two divisions 

(a manufacturing division and a retail division) where a retailer division faces a random 

customer demand in consideration. The retail division sets the retail price, and orders 

an intermediate product from the upstream manufacturing division. The manufacturing 

division accepts or rejects the retail division's order. We particularly consider two commonly 

used transfer pricing methods for tax purpose - the cost-plus method and the resale-price 

method. We also extend our analysis to a case of a multinational firm whose manufacturing 

and retailing divisions are under different income tax rates. Our analysis of both the 

retailer's problem and the central planner's problem is based on the classical price-setting 

newsvendor problem and its variants. We show several sensitivity results to the parameters 
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of these methods. Numerical results indicate that the cost-plus method tends to allocate 

a higher percentage of profit to the retail division while the resale-price method tends to 

achieve a higher firm-wide profit. These results suggest that the choice of transfer pricing 

method has a significant impact on the profit as well as operational decisions of a firm. 
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Chapter 2 

Estimating the Premium for 

Extended Hedge Fund Lockups 

2.1 Introduction 

A lockup period for investment in a hedge fund is a time period after making the investment 

during which the investor cannot freely redeem his investment. It is routine to have a 

one-year lockup period, but recently the requested lockup periods have grown longer. It 

is reasonable for an investor in a hedge fund to expect compensation for the restricted 

investment opportunities imposed by an extended lockup condition, with the compensation 

increasing as the length of the lockup period increases. We regard that compensation as 

a lockup premium, and we ask: What should that lockup premium be as a function of the 

length of the lockup period? 

In asking this question, we take the point of view of a manager of a fund of funds, who 

has to choose between two investments in similar funds in the same strategy category, with 

the first having a one-year lockup and the second having an n-year lockup. We assume that 

the manager will re-balance his portfolio of hedge funds on a yearly basis, as permitted. 

This perspective leads us to define the lockup premium as the incremental deterministic 

return rate required to make the expected total returns of the two alternatives equal. Our 

definition accounts for lost gains due to the inability to re-balance the investment portfolio 

in hedge funds, but not for other lost investment opportunities, so we provide a conservative 
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estimate of the lockup premium. Investors can separately consider the consequence of other 

lost investment opportunities, if that is desired. Indeed, recent financial history indicates 

that the other component may be very important. Nevertheless, for clarity, we think it is 

desirable to separate these issues. 

With that definition specified, our goal is to develop a mathematical model to estimate 

the lockup premium as a function of the lockup period and key hedge-fund performance 

measures. There are significant challenges in deciding what modelling approach to use. We 

want a model that is easy to understand, properly reflects the specific lockup conditions, 

has predictive power, can be effectively analyzed and can be fit to available data. 

These requirements lead us to propose a relatively simple three-state Markov chain 

model. This model formulation is admittedly highly stylized, but we think that actually 

is an advantage rather than a disadvantage, because the data and their quality are quite 

limited. Nevertheless, this stylized model may be viewed with skepticism, because it is 

unfamiliar. It is thus good to remember that many of the most frequently used models are 

highly stylized, having very few parameters; e.g., the geometric Brownian motion model 

underlying the Black-Scholes formula. 

By introducing a model with relatively few parameters, we have fewer parameters to 

fit to data. In this context, we contribute by developing an innovative way to calibrate 

(fit) the model to data. We do not directly fit the natural model parameters, which are 

the Markov chain transition probabilities and the state-dependent returns, but instead 

we indirectly fit the model to more directly observable hedge fund performance measures, 

specifically, the persistence of return, the variance of return and the hedge-fund death rate. 

This indirect approach requires that we solve systems of equations to determine the required 

model parameters. We carry out this model fitting using hedge-fund return data from the 

Tremont Advisory Shareholders Services (TASS) database. 

Even though estimating the value of the premium for hedge-fund lockup is a liquidity 

problem similar to determining the appropriate rate of return for a long term certificate of 

deposit, it has its own special character. There is a complication with hedge funds, because 

investors may actually have an early opportunity to redeem their investment. If the hedge 

fund performs very poorly, so that it ceases operating, then a significant portion of the 
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investment is returned to investors, even if the lockup period has not expired. At first, 

glance, it might appear that consequently there should be no liquidity problem at all, but 

the two extreme alternatives are not the only possibilities: Hedge fund performance may 

be weak, so that returns are low and future prospects are dim, even though the fund does 

not cease operating. The lockup prevents the investor from moving his investment away 

from such "sick" funds. This special way hedge fund lockup is treated makes the liquidity 

premium more complicated, providing motivation for more careful analysis. 

Our proposed model directly responds to this special feature of hedge fund investments: 

We consider three possible states for a hedge fund: good, sick and dead, and we assume that 

transitions among these states occur randomly according to a Markov chain. In a dead 

state, the investor suffers a low return, but at the next yearly reinvestment opportunity the 

state changes to a good state, because the investor gets his money back and can invest in 

a new fund, which we take to be in the good state. (We assume that the investor gets all 

his investment back, even though he suffers the low return.) There is no extra penalty from 

the lockup associated with a dead fund, but there is from a sick fund. With only nominal 

one-year hedge fund lockup, we assume that investors will reinvest in a good fund at the 

next yearly reinvestment opportunity whenever any fund they have invested in becomes 

sick. In contrast, with the extended lockup period, no reinvestment is possible until the end 

of the lockup period. In the meantime, the sick fund may perform poorly, and produce low 

returns, but there also is a chance that it may rebound and become a good fund. Clearly, 

some care is needed to properly account for the various good and bad possibilities, which 

inevitably must be regarded as random events. The Markov chain models can capture the 

behavior described above, so provide insight. 

It remains to specify the three Markov chain states. We propose classifying the funds 

according to their return rates. Specifically, we focus on the relative return rates, represented 

as the percent-point difference from the average annual return rate for that strategy category 

of funds. We say that a fund is in a: good state when its relative return rate is higher than U 

percent, sick state when its relative return rate is between L and U percent, and dead state 

when its relative return rate is less than L percent. We leave U and L as model parameters 

in general. Figure 2.1 illustrates possible state definitions in a plot of the distribution of 
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annual return rates based on 4788 selected observations from 2001 to 2005 from the TASS 

database. Tentative levels U and L show how states might be denned. Throughout this 

chapter, we assume that the hedge fund starts off in a good state. 

o o o o o o o o 

Relative Return 

Figure 2.1: The distribution of hedge fund annual relative return rates based on 4788 

selected observations from the TASS database from 2001 to 2005. Tentative levels L and 

U divide the funds into the three states G, S and D. 

A fundamental principal guides our analysis: the persistence hypothesis. We postulate 

that there is a persistence in hedge fund performance within a particular hedge fund strategy 

category: We assume that above-average funds will tend to continue doing well, while 

below-average funds will tend to continue faltering. A persistence of 7 means that for every 

1 percentage point you earn above the average in the current year, you expect to earn 7 

percentage points above the average in the next year. 

We estimated the persistence by doing a regression analysis on the hedge-fund-return 

data from TASS, and found strong statistical evidence to support the persistence hypothesis. 

There are eleven strategy categories of hedge funds in TASS. (See, e.g., Boyson and Cooper 

(2004), Hasanhodzic and Lo (2007) or visit Credit Suisse/Tremont (www.hedgeindex.com) 

to find out more about strategy categories.) Table 2.1 shows the auto-regression results from 

the data we selected. We did the analysis by strategy category. Included are 95% confidence 

intervals for each persistence factor (the regression coefficient). Zero persistence is contained 

in the 95% confidence interval for only three strategies. The P-values give the probability 

http://www.hedgeindex.com


www.manaraa.com

CHAPTER 2. ESTIMATING THE PREMIUM FOR EXTENDED HEDGE FUND 
LOCKUPS 11 

Table 2.1: Auto-regression analysis results 

strategy number of persistence lower upper R2 P-value 

Convertible arbitrage 

Dedicated short bias 

Emerging market 

Equity macro 

Event driven 

Fixed income arbitrage 

Fund of fund 

Global macro 

Long short equity 

Managed future 

Other 

All 

observations 

244 

30 

325 

270 

534 

196 

982 

176 

1654 

238 

167 

4816 

7 

0.49 

0.29 

0.35 

0.06 

0.27 

0.24 

0.27 

0.10 

0.15 

0.22 

0.42 

95% 

0.38 

-0.04 

0.26 

-0.05 

0.20 

0.12 

0.22 

-0.06 

0.11 

0.09 

0.27 

95% 

0.60 

0.62 

0.45 

-0 .16 

0.34 

0.36 

0.32 

0.27 

0.20 

0.35 

0.57 

0.24 

0.10 

0.13 

0.004 

0.09 

0.07 

0.10 

0.009 

0.03 

0.04 

0.15 

4 .24x l0" 1 6 

0.08 

1 .02xl0 - 1 1 

0.28 

9.27 x l 0 ~ 1 3 

1.28xl0~4 

4 .48x l0 - 2 4 

0.21 

8 . 0 3 x l 0 - 1 2 

1.12xl0~3 

1.34xl0- 7 

of seeing the observed persistence if there actually were none. The estimated persistence 

factors vary, but for most strategy categories, the P-values are very small. The regression 

analysis shows that R? is very low, implying that there is considerable randomness. To 

illustrate, Figure 2.2 is the scatter plot of two consecutive relative returns and the associated 

least-squares-fit with zero intercept for four of these fund categories. 

In this chapter, we only consider fund strategy as a basis for persistence. Other clas­

sifications might also produce persistence; e.g., one can estimate persistence based on the 

fund manager's tenure, asset size, fee structure, and so on, depending on the investor's 

judgement. As long as persistence is found or anticipated, our Markov chain model can be 

applied to estimate the lockup premium. 

The Markov chain model can be used to estimate how the lockup premium depends on 
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y = 0.49x 

20 30 40 -40 

(a) Convertible arbitrage 

^r& 

(b) Emerging market 

. . . y •= 0.27X 

(c) Event driven (d) Fund of fund 

Figure 2.2: Scatter plots and associated least-squares lines for hedge fund annual relative 

return rates in successive years from 2000 to 2005 for four strategy categories from the 

TASS database. 

the hedge-fund performance measures. Consistent with intuition, we show that the lockup 

premium increases with both the variance of the return and the persistence of the return, 

provided that the persistence is not too high. (There necessarily is no lockup premium with 

total persistence, when 7 = 1.) What is less obvious, but consistent with intuition upon 

reflection, is that the lockup premium decreases with the hedge fund death rate. Of course, 

increased death rate is bad for the investor, but the investor experiences the low return 

associated with a dead fund whether or not there is a lockup. With the extended lockup, 

the higher death rate can only help by giving the investor an opportunity to reinvest his 

money. 

The models do more: The models quantify the effect of these observable hedge fund 

performance measures on the lockup premium. For example, we show that the three-year 
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lockup premium in the DTMC model is quite well approximated by the function 

4(5,7, a) = 0.047 ^ . n y ^ o . ^ (2.1) 

where 8 is the death rate, 7 is the persistence and a is the standard deviation of the yearly 

relative returns (under parametric assumptions to be explained later). 

Organization of the chapter. We start in §2.2 by reviewing the related literature on 

liquidity, including premiums for hedge fund lockup. In §2.3 we carefully specify what 

we mean by the lockup premium. In §2.4 we discuss persistence of hedge fund returns, 

reviewing the literature and analyzing data from the TASS database. In §2.5 we develop 

a simple approximation for the lockup premium based on persistence alone, without any 

Markov chains, assuming no dying funds. This simple analysis provides a useful reference 

case, because it yields a simple formula. In §2.6 we introduce and analyze our three-state 

DTMC model, carrying out our indirect fitting procedure. In §2.7 we show how the model 

parameters and the lockup premium depend on basic hedge fund performance measures. 

Finally, in §2.8 we draw conclusions. We present additional material in an appendix. 

2.2 Liquidity Literature Review 

There is a substantial literature on liquidity, including hedge fund lockup, but it mostly has 

a different character. 

Liquidity premiums in asset pricing. The liquidity premium is well recognized as an 

important factor in asset pricing, but it is commonly measured by transaction cost; e.g, see 

Amihud and Mendelson (1986), Pastor and Stambaugh (2003), Chordia et al. (2001), and 

Eleswarapu and Reinganum (1993). For example, in the stock market, bid-ask spread is one 

measure of the liquidity premium. Amihud and Mendelson (1986) showed that there exists 

an increasing and concave relationship between the asset return and the bid-ask spread. 

Darar et al. (1998) confirmed this result, using the reciprocal of the stock turnover rate 

to measure the liquidity premium. More recently, Vayanos (2004) considered liquidity in 

an equilibrium model. He considered the liquidity premium in asset pricing with different 
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transaction costs. He showed that as assets become more volatile, the required excess return 

from a riskless asset increases with the transaction costs. 

Studies of liquidity have also been performed for the bond market; e.g., Amihud and 

Mendelson (1991), Warga (1992), Krishnamurthy (2002) and Longstaff (2004). For bonds, it 

is argued that there should exist a clear premium for liquidity, separate from the credit risk 

premium. Most-recently-issued U.S. Treasury bonds are considered the most liquid bonds 

available, among all bonds with similar conditions. Since US Treasury bonds are assumed 

to be riskless, they provide a natural way to measure the liquidity premium, without having 

to consider credit risk. The papers above study the liquidity premium by comparing the 

price of most-recently-issued US Treasury bonds (on the run) to the price of the bonds 

issued three months previously (off the run). 

There are a few papers that are more closely related to what we do here, namely, 

Longstaff (1995, 2001) and Browne and Whit t (1996). These papers also view the liquidity 

premium as arising from the investor's inability to rebalance his portfolio in a timely way. 

Specifically, they define the liquidity premium as the additional required fixed return to 

compensate for the loss of the investor's utility from the inability to rebalance the investor's 

portfolio. They calculate the required liquidity premium as a function of the degree of risk 

averseness in the utility function, the market growth rate, and the liquidity restriction 

period. They rely heavily on mathematical models and mathematical analysis for this 

purpose. Unlike these references, we do not use utility functions. 

We conclude this section by mentioning Hayes (2006), which used a Markov chain model 

for a difference purpose - to develop a model for the maximum drawdown of hedge funds. 

Empirical studies on hedge fund lockup. There is a growing literature on hedge 

funds, e.g., see Agarwal and Naik (2005), but only a few researchers have focused on hedge 

fund lockup. Liang (1999) found that the average hedge fund returns are related positively 

to the lockup periods from the analysis of Hedge Fund Research, Inc. (HFR) database. 

Aragon (2007) quantified the lockup premium for hedge funds empirically. He compared 

the hedge fund performance with and without extended lockup conditions. He estimated 

that the average difference in the annual returns is around 4 to 7 percentage points. 
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There also are empirical studies on the liquidity premium for funds other than hedge 

funds. For example, Ippolito (1989) conducted a similar study for mutual funds. There is 

a load-type mutual fund, which assesses sales charges. Ippolito (1989) found that the load-

type mutual funds make approximately 3.5 percentage points higher return than no-load 

mutual funds. 

In summary, from our investigation of the literature, we find that only a few papers -

Longstaff (1995, 2001) and Browne and Whit t (1996) - have interpreted liquidity premium 

as quantification of the cost of a restricted rebalance opportunity. We found no previous 

papers employing models calibrated to data in order to estimate the liquidity premium. 

And none of the papers have used Markov chains, with the exception of Derman et al. 

(2009a), which is a preliminary account of the research reported here. 

2.3 Definition of the Lockup Premium 

In this section we carefully specify what we mean by the lockup premium. To do so, we first 

define the rate of return of an investment having a stochastic process X = {X(t) : t > 0}; 

i.e., the (random) value at the end of n years of one dollar invested in this investment at 

the beginning of the first year is 

dollars. We now define a deterministic value rn such that 

enr" = E[Vn] (2.3) 

for Vn in (2.2); i.e., rn is the constant rate of return, with continuous compounding, that 

yields the same expected value E[V^] over n years. Following common practice, we have 

"backed out" the rate of return rn from the expected cash value E[Vn]. By (2.2) and (2.3), 

rn can be expressed directly as 

logE^n] 1 , /_. 
rn = = - log E 

n n V 

where we use the natural logarithm (base e). 

Now consider two different hedge funds within the same strategy, with rate of return 

stochastic processes X1 and X 2 , as above. Let X1 have a 1-year lockup and let X2 have 

,(/0
nx(t)<ft) (2.4) 
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an n-year lockup. Let the lockup premium pn be 

Pn = rl- rl, (2.5) 

where r\ is the rate of return of X1, defined as in (2.4). To evaluate the premium, we need 

to determine the two return-rate stochastic processes X1 and X 2 ; to do that, we will apply 

the Markov chain model. 

However, we do not actually have the continuous-time return-rate stochastic processes 

directly available from the TASS database. Instead, monthly returns are reported. Consis­

tent with the framework above, we define a continuously compounded annual returns B{ for 

year i from monthly returns M y for the j t h month within year i by geometric compounding, 

i.e., 

e ^ = (l + My.) ( l + M i ) 2 ) - - - ( l - | - M y 2 ) ; (2.6) 

i.e., the (random) value at the end of j months of one dollar invested in this investment 

at the beginning of year i is (1 + M, i ) ( l + Mj;2) • • • (1 + Mij) dollars. Consequently, the 

(random) total value Vn at the end of n years is the n-fold product 

Vn = f[eB>=e^B> (2.7) 

for Ai in (2.6). Equivalently, starting from the reported monthly returns M y , we let the 

return-rate stochastic process X be defined by 

X( t ) = 121og(l + Mi j ) for ( t - l ) + ( j - l ) / 1 2 < t < ( i - l ) + 0'/12), (2.8) 

so that 
/•(i-i)+C?7i2) 

/ X{t) dt = log (I+ Mitj) (2.9) 
J(i-l)+(j-l)/12 

for 1 < i < n and 1 < j < 12. With definition (2.8), equation (2.7) is consistent with 

definition (2.2). 

As indicated above, we start with the monthly returns M y and then construct the 

annual rate of return B{ by geometric compounding, as in (2.6). In order to reduce the 

effects of systematic yearly fluctuations, and more closely approach stationarity, we focus 

on relative return rates for each fund strategy. To do so, we let fn ~ E[i?j], the mean 

return rate for a particular hedge fund strategy within year i, estimated as the average of 
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the observed values of Bi over all funds within that strategy. Then the (random) relative 

return rate is 

Ri = Bi- E[Bi] = Bt- IM. (2.10) 

We exploit persistence of hedge fund returns in the setting of these relative return rates Ri. 

Combining equations (2.7) and (2.10), we see that the (random) total value at the end 

of year n of hedge fund j is 

Vj = f[e(w+Bi> = e&iw)e(£r=i^) (2.11) 
i = l 

and the difference between the expected total returns is 

E[V'} - E[Fn
2] - e(£r=i "0 (E [e<X?=iR" 

Hence, the premium in (2.5) becomes 

E 3(S)"=i Ri 
] ) • 

1 2 
Pn = rn~ rn ~ ~~ L 

log E log(E =,(£?=!*?) 

(2.12) 

(2.13) 

which is independent of the average rates / / j . 

To determine what this lockup premium pn should be, we will be modelling the relative-

return-rate stochastic process {i?j. : k > 1} by a discrete-time Markov chain, and then 

defining the associated relative-return-rate stochastic process {i?| : k > 1} to account for 

the extended n-ye&r lockup. With (2.13), we will also set the initial state as Good, as 

mentioned in S2.1. 

2.4 Persistence of Hedge Fund Returns 

As indicated in §2.3, we specify how hedge funds perform by looking at the relative rate 

of return of a fund, given by the Ri in (2.10). In that context, we say there is persistence 

if i?i+i tends to be similar to Ri. in particular, we measure persistence by the regression 

coefficient for pairs (Ri,Ri+i). Before discussing our regression analysis, we review the 

literature on persistence. 
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The pers istence l iterature. Persistence has been studied quite extensively within the 

hedge-fund literature, but it remains a highly controversial topic. A consensus has not yet 

been reached on the degree of persistence in hedge-fund returns, or even whether it exists 

at all. Also, there are differences in the specific definition of persistence; e.g., Jagannathan 

et al. (2006), Fung et al. (2008) and Kosowski et al. (2007) are about alpha persistence. 

However, persistence always represents the ability to predict future returns from past and 

present returns. 

There are serious questions about the quality of the data and the proper way to analyze 

it. Researchers have tried to take advantage of the two main hedge fund databases - TASS 

and HFR. In doing so, researchers have discovered that it is difficult to make unbiased 

estimates because reporting is voluntary, and some funds stop reporting, especially those 

performing poorly; see Jagannathan et al. (2006), Fung et al. (2008), Fung and Hsieh (2009) 

and Kosowski et al. (2007). 

Despite the difficulty with biases in the hedge fund data, researchers have conducted 

studies. Although some researchers did not find evidence of performance persistence, others 

did. Brown et al. (1999) used a simple two-state categorization - win or lose - to measure 

performance persistence, recording a win if the fund beats the median return, but they did 

not find evidence of persistence. Boyson and Cooper (2004) carried out a similar analysis 

and still did not find evidence of persistence. 

However, several papers found performance persistence for shorter periods ranging from 

a quarter to three years. Koh et al. (2003) used the method of Brown et al. (1999) for 

Asian hedge funds and found strong persistence in short horizons from monthly to quarterly. 

Agarwal and Naik (2000) and Jagannathan et al. (2006) used linear regression, as we do, 

as well as the previous two-way classifications. Agarwal and Naik (2000) did not provide 

regression slope explicitly but showed that depending on the strategy category of hedge 

fund, the percentage of funds which have statistically significant positive slope in regression 

ranges from 5 to 34 percent, where most of the strategy categories have around 20 percent. 

Using the same parametric linear regression and non-parametric two-way classifications, 

Agarwal and Naik (2000) claimed that the evidence of persistence is strongest for the 

shorter quarterly time periods. On the other hand, Edwards and Caglayan (2001) found 
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strong persistence in over 1-2 years from the Managed Account Reports (MAR/Hedge) data. 

Furthermore, Jagannathan et al. (2006) found a significantly high performance persistence 

for a three-year period in their empirical study with HFR data. Jagannathan et al. (2006) 

carefully took account of the bias from voluntary reports and did regression analysis for the 

relative returns for three consecutive years. Using generalized method-of-moment (GMM) 

estimation, they found a statistically significant persistence factor of 0.56 for a three-year 

period. 

There also exists indirect evidence of performance persistence from the study of hedge-

fund liquidation or survival. Brown et al. (2001) indirectly supported performance per­

sistence when they found that a negative aggregated return over the previous two years 

increases the probability that a fund will liquidate. Furthermore, Horst (1971) concluded 

that hedge-fund survival is strongly related to historical performance. Baquero et al. (2005) 

conducted probit regression analysis of hedge-fund liquidation. They found that funds with 

high returns are much less likely to liquidate than funds with low returns from quarterly 

return data, which again indirectly supports persistence. 

Our r eg res s ion ana lys i s . As indicated in §2.1, we conducted linear autoregression anal­

ysis with the TASS data to find the best linear regression line between two consecutive 

year's relative rates of return (the Ri in (2.10)). Specifically, letting the current year's 

(annual) relative return rate be denoted by Rc and the next year's relative return rate be 

denoted by Rn, we find the slope 7 for the line Rn = 7 • Rc, which produces the minimum 

sum of squared errors. 

The actual data analysis procedure is somewhat complicated. A fund usually keeps 

reporting its monthly returns as long as it continues operating. If a fund ceases reporting 

its returns to TASS, then the last date of the report is marked as the drop date in the data. 

A fund may stop reporting its returns if it is liquidated due to successive losses. However, 

it is not always true that a hedge fund suffers huge losses when it ceases reporting. In fact, 

even a successful fund may cease reporting if it no longer wants to reveal its performance 

publicly. Thus, we cannot simply count the number of funds dropped from the data to 

estimate the liquidation rate of hedge funds. If the reason why a fund ceases reporting is 
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available, TASS reports it, but the reason is often not reported. 

As mentioned above, TASS differentiates between the date the fund starts reporting and 

the date the fund starts operating. Thus, we can exclude one possible bias: the so called 

backfill bias. When a fund starts reporting returns after operating for several months or 

years, the fund simultaneously reports several monthly returns at the time its first return 

is reported. It is then possible for the fund manager to drop or change some bad monthly 

returns which have been made before the reporting date, which may increase reported 

returns from the actual returns. Fung and Hsieh (2000) calculate that the difference from 

actual returns and reported returns is about 3.6% per year from this reason. Therefore, we 

consider monthly returns only after the fund's first reporting date. Similarly, if a fund's 

monthly returns are reported less than six times a year, we exclude these data due to the 

possibility of hiding or altering bad returns. 

The other criterion we consider is the Net Asset Value (NAV) managed by a fund, which 

is also archived in TASS. If a fund's managed assets are too small, then the monthly return 

might be too volatile, since it may have relatively less ability to diversify its risks. We 

assume that a fund has an ability to produce relatively stable returns once its managed 

assets reach a certain level. Specifically, we consider monthly returns only if the fund's 

NAV has reached 25 million dollars at least once, at which point we assume that the fund 

becomes mature, so that it can produce relatively stable returns. Similar criteria were used 

by Boyson and Cooper (2004). 

Before conducting the regression, we also exclude pairs of return rates with extreme 

values, depending on the distribution of the pairs of returns for each strategy category. 

Even one or two outliers can seriously affect the regression, especially if we do not have a 

large number of observations. Specifically, we exclude pairs of relative returns when one 

absolute relative return exceeds ± 30% for fixed income arbitrage, equity macro and ± 40% 

for convertible, dedicated short bias, and global macro strategy categories. We also exclude 

pairs of relative returns exceeding ± 50% for emerging market, event driven, fund of fund, 

long/short equity, managed future, and others strategy categories of funds. 

After selecting the monthly returns based on the above criteria, we make pairs of two 

successive annual returns for each hedge fund from 2000 to 2005. Thus, there are possibly 
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six pairs of annual returns of a fund, if it does not cease reporting during that period. As 

indicated in (2.6), the monthly returns are annualized to produce annual returns, from which 

we calculate relative rates of return Ri as indicated in §2.3. The regression analysis results 

in very low intercept for all strategy categories. Thus, we conducted an auto-regression 

without an intercept to obtain our final estimate. The results are shown in Figure 2.2 and 

Table 2.1 in §2.1. As can be seen there, we found eight out of eleven strategies of fund with 

significant persistence: (i) convertible, (ii) dedicated short bias, (iii) emerging market, (iv) 

event driven, (v) fixed income, (vi) fund of fund, (vii) managed future, and (viii) others. 

For these fund strategies, the least-squares-fit slope, 7, ranges from 0.15 to 0.49. 

A different way to estimate the persistence factor is to look at the ratio of the next-year 

average return rates to the current-year average return rate, restricting attention to the 

returns that are positive in the current year. (The same estimate is produced when you 

repeat that procedure, but instead restrict attention to the return rates that are negative 

in the current year.) See Appendix A.3 for the details. 

2.5 An Approximation for the Lockup P remium Based on 

Persistence Alone 

Given the expression for the lockup premium pn in (2.4), (2.5) and (2.13), it should be 

evident that no exact analysis is possible based on persistence alone. However, we now 

show that it is possible to obtain a useful rough approximation for the lockup premium 

based on persistence alone if we make an appropriate approximation in our definition of the 

lockup premium. 

Modifying t h e definition of the premium. The idea is to simplify the expression 

for the rate of return rn in (2.4). Expression (2.4) is complicated primarily because the 

expectation operator appears in between the logarithm and the exponential functions, so 

they cannot cancel each other out. What we do for our rough approximation, then, is act 

as if we can interchange the order of the expectation operator and the exponential function. 
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In the setting of (2.13), that yields the approximation 

1 r- ' , (£[£?=! *i]) 
Pn Pn = i o g ( e (E[E? = 1 *y)) _ log ( e ( E [ E ? = 1 ^ ] ) y 

(2.14) 

i=\ 

Unlike pn in (2.13), the approximation pn in (2.14) is a linear function of the expected 

return rates E[i?^], and so is much easier to analyze. 

We can also regard approximation (2.14) as an approximation derived from asymptotic 

analysis, where we use the classic approximations log(l + x) « x and ex s=i 1 + for 

x close to 0. A one-term approximation is (2.14), while the two-term approximation is 

Pn « pn + l / (2n) E (£*tf - E 5>2)2 (2.15) 

The second term explains most of the error for small n, e.g., for n < 5; see §A.5 in the 

Appendix. 

Assumpt ions based on persistence alone. We now show how persistence alone, with­

out any Markov chains, can be used to generate an estimate of the lockup premium, provided 

that we use the linear approximation (2.14). This simple analysis depends on four additional 

assumptions: 

1. There is a single persistence factor 7 with 0 < 7 < 1. 

2. We can ignore the phenomenon of hedge funds dying. 

3. The return rates Ri each year are normally distributed with a fixed variance a2. 

4. The performance of a fund is considered good if its annual return exceeds the average 

annual return. 

Together with approximation (2.14), the first two assumptions imply that the expected 

relative returns over time evolve linearly, enabling us to derive a simple approximate no-

death lockup premium as a function of the expected excess return rate of a good fund. The 

last two assumptions enable us to determine the expected excess return rate of a good fund. 

The third assumption can be weakened, but some analogous assumption is needed. The 
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fourth assumption is just one possible case; it can easily be varied without altering the rest 

of the analysis. 

The no-death lockup premium. Let YQ denote the expected excess relative rate of 

return of a good fund, assumed to be strictly positive. As in §2.3, let Rn be the relative 

return rate in the nth year. As mentioned in §2.1, we assume that the hedge fund starts off 

in a good state. Then, the assumed 7 persistence implies that the expected relative return 

rate during the first year is E[i?i] = ^YQ, for 0 < 7 < 1. The notion of 7 persistence, with 

no funds dying, implies that we can recursively determine the expected relative return rates 

in successive years by 

E[Rn] = 7 • E[Rn-!] = 7
n • YG, n > l . (2.16). 

As a consequence of (2.16), the sum of the expected relative return rates up to the nth 

year can be expressed as a product 

f > [ i y = YG ( 7 ( ^ W ) ) , 0 < 7 < 1 - (2.17) 

Combining this simple analysis with approximation (2.14), we can compute the approx­

imate premium for an n-year lockup compared to 1-year lockup. Under a 1-year lockup, 

investors have a chance to replace all sick funds with good funds at the end of each year. 

If they do, the expected return each year is the same as in the first year: E[i?i] = ^JYQ. 

Thus, at the end of the nth year, the total expected relative return is simply njYo. On the 

other hand, under an n-year lockup, the fund just evolves without replacement up to the 

nth year, as in (2.17). We assume that after the nth year, the funds with 1-year and n-year 

lockups are both replaced by funds with the same 1-year lockup, so that there necessarily 

will be no difference in a fund's return after the nth year. 

Consequently, the approximate no-death lockup premium is 

^^)=(^E7^-^E7W Pn = P; 

which is a concave increasing function in n for each 7, 0 < 7 < 1, and a concave function 

of 7 for each n > 1. The approximate lockup premium pn (7) is not an increasing function 
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of 7 overall; e.g., for n = 2, pn{l) = YQ^{\ — 7) /2 , which is increasing for 0 < 7 < 1/2, 

but decreasing for 1/2 < 7 < 1. More generally, pn = 0 for both 7 = 0 and 7 = 1, with 

Pni'y) > 0 for 0 < 7 < 1. However, the lockup premium function pn(-y) is increasing in 7 

for all sufficiently small 7, for each n > 1. 

From (2.18), we see that p~\ = 0, pn —> ̂ YG as n —> 00, and we have the bounds 

^ O - ^ y ) ^ ' ^ ^ ^ 1 - ^ ) ' n ^ ' (2-i9) 
which yield convenient approximations. For large n or small 7, the lower bound is an 

accurate approximation of pn. 

The excess rate of return from a good fund. The approximate no-death lockup 

premium function pn("i) clearly shows how the approximate lockup premium depends on 

the three quantities: the length n of the extended lockup period, the persistence factor 7 

and the expected excess rate of return of a good fund, YQ- Clearly, n is directly observable, 

and we have seen how we can estimate 7, but it remains to specify YQ. 

However, if we define YQ as the expected excess rate of return of a good fund and apply 

the last two assumptions, then we can calculate YQ as well. Letting N(m, a 2) denote a 

normally distributed random variable with mean m and variance a2, we have 

YG = E[iV(0, <r2)|iV(0, a2) > 0] = E[|JV(0, a2)\] = aE[\N(0, l)|] = y/2/ir(r « 0.8a . (2.20) 

We can combine (2.18) and (2.20) to obtain the following general approximate no-death 

lockup premium function 

pn(7,a) = 0 . 8 a 7 ( " l - J ~ ^ V n > l . (2.21) 

With assumptions 3 and 4 above, we see that the no-death lockup premium should be 

approximately directly proportional to the standard deviation a. Assumption 4 plays a key 

role in getting the simple formula (2.20), but we can generalize for arbitrary boundary point 

U, using the following formula for the conditional expectation of a normal random variable: 

E[N(m,o>)\a < N{m,a2) < b] = m + a ] ^ " ^ ~*«* ~ " ^ (2.22) 
$ ((& - m)/cr) - $ ((a - m ) / a ) 
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for —oo < a < b < +00, based on the relation xcf>(x) = —<j)'(x) where cf) is the standard 

normal density. Prom formula (2.22), we see that YQ will not be proportional to a if we 

change the upper boundary point U. 

We emphasize that , even under assumption 4 above, having pn be directly proportional 

to a depends critically on the third ceteris-paribus assumption made above. Since we are free 

to choose the monetary units, we can choose to define all returns relative to the standard 

deviation a, which must be in the same units as the returns. In that sense, the lockup 

premium is automatically proportional to a. The proportionality conclusion becomes more 

meaningful when we assume that the distribution of returns depends on a as a simple scale 

factor, as provided by assumption 3 above. We need to impose a strong condition on the 

way the return distribution changes with a in order to deduce the desired proportionality 

conclusion. The normality is only used to compute the precise value of the mean. 

Relat ing to the calibration by Markov chains. We remark that the Markov chain 

model calibration will also produce its own estimates of the excess return YG, but we 

will find that analysis yields similar conclusions. Indeed, our main numerical example has 

YQ = 0.67a. We remark that we can obtain exactly that value if we take YQ to be the 

median of the positive relative returns, because the median of the random variable |iV(0, l ) | 

is 0.67. 

Anticipating our future numerical examples with Markov chains, we refer to our estimate 

for the lockup premium in Figure 2.8 in §2.6.7 for the case 7 = 0.5, a — 0.1, 5 — 0 and 

YQ = 0.067. Our estimate without death appears as the upper curve in Figure 2.8 in §2.6.7. 

Figure 2.8 shows plots of two curves for positive death rates 6, obtained using the DTMC 

model in §2.6 under the same approximation. The plotted cases for S — 0.03 and 5 = 0.06 

show the importance of going beyond the no-death model. Consistent with Figure 2.8, we 

will see that the lockup premium is decreasing in the hedge fund death rate with our Markov 

chain model. Consequently, formulas (2.18) and (2.21) in this section, derived under the 

assumption of zero death rate, provide upper bounds on our estimated lockup premium 

with positive S, with a simple closed-form formula. 
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2.6 The Discrete-Time-Markov-Chain Model 

We start in §2.6.1 by discussing two important hedge-fund performance measures: persis­

tence and the death rate. Next in §2.6.2 we define the basic three-state DTMC model, 

which has six parameters. Then in §2.6.3 we introduce four equations that the six parame­

ters must satisfy, based on standard hedge fund performance measures. In §2.6.4 we develop 

explicit formulas for the three parameters appearing in the DTMC transition probabilities. 

In §2.6.5 we show how to calculate all the parameters after specifying two of the relative 

returns. We present numerical examples in §2.6.6. Finally, we show how to calculate the 

lockup premium in §2.6.7. 

2.6.1 Important Hedge-Fund Performance Measures 

Our Markov chain model will depend critically on the persistence of returns and the hedge-

fund death rate. So we discuss these performance measures further now. 

T w o persistence factors: JG and 75 . In equations (2.27) and (2.28) below we will 

introduce two state-dependent persistent factors 7 G and 75, instead of just the single 7. 

Clearly, this generalization is important if the persistence factors for the two states do in fact 

differ significantly. To illustrate what actually may happen, Figure 2.3 shows the results 

of a regression analysis applied to two consecutive-year relative returns for positive and 

negative parts of the current relative-return data separately. Figure 2.3 shows a significant 

difference in the slope of regression line for several fund categories, suggesting that it may 

be important to use separate state-dependent persistence factors. 

The stat ionary death rate S. We calibrate our models by specifying the overall annual 

death rate, denoted by 5. Unfortunately, estimating the death rate from the TASS database 

is difficult, in part because poorly performing funds often stop reporting, but funds also 

stop reporting for other reasons, e.g., because they seek no new investors. 

After checking the reasons for funds being terminated in the HFR data, Rouah (2006) 

concluded that , after removing these biases, 3 to 5% of the hedge funds leave the database 

each year because of failure. As noted in §2.4, Park (2006) estimated that the fund death 
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rate is only 3.1 %, even though the total attrition rate from the TASS database was 8.7 % 

, based on her analysis from 1995 to 2004. 

The death rate is closely related to the survival probability and median life of the fund. 

Clearly, as the death rate increases, the survival probability and the median life decrease. 

Since median life is more easily observable, it is convenient to verify the death rate of our 

model through the median life in the hedge fund data. 

One way to check the validity of the model is to calculate the survival probability curve 

produced by the model. In terms of the transition matrix P to be introduced in (2.23). 

the probability of surviving n years is Sn = PQ G + PQ S for n > 1. Figure 2.4 shows the 

survival probability curve for the DTMC model when 5 = 0.03 and 0.06. When 8 — 0.03, 

about 90% survive for 5 years, whereas the survival probability goes down to around 80% 

when S = 0.06. If we increase <5 above 0.07, then we are unable to fit the DTMC model. 

Studies estimating the median survival time of hedge funds were discussed in §2.4. In 

addition, Gregoriou (2002) estimated that median survival time of all hedge funds is 5.5 

years, depending on factors such as millions managed, performance fee, leverage, minimum 

purchase and also on the redemption period. More recently, Rouah (2006) reported es­

timates of median survival time due before liquidation as ranging from 5.8 to 7.4 years 

based on the HFR data and from 7.2 to 17.4 years based on the TASS database. This last 

observation by Rouah (2006) suggests that the mean life of a fund across all strategies is 

approximated reasonably by the DTMC model with 5 = 0.06. 

2.6 .2 T h e B a s i c D T M C M o d e l 

As indicated in the introduction, we let our Markov chain models have three states: good, 

sick and dead. We model the changing fund state over time as a DTMC, as in Chapter 

4 of Ross (2003). We let time be discrete, with the unit of time representing one year. 

The initial DTMC is an absorbing Markov chain, with the D state being the sole absorbing 

state; once a fund becomes dead, it remains dead forever. We consider a transition matrix 
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depending on three parameters: p, q and r: 

G 

P= S 

D 

( V 1 - P 0 

q — r 

1 

(2.23) 

) 

which corresponds to the following diagram: We have assumed that it is impossible to 

transition from good to dead in a single year, thus eliminating one parameter. 

We now move on to consider an associated ergodic Markov chain, having a non-degenerate 

limiting steady-state distribution, by assuming that a new hedge fund appears in the good 

state to replace a dead hedge fund right after it dies. This can be done with the new 

three-state DTMC transition matrix 

G ( « 1 - r . n \ 

P= S 

D 

p 1 -p 0 

(2.24) q r 1 — q — r 

\ p 1 — p 0 

In (2.24), the transition probabilities from a dead state are the same as from a good state, 

because a dead fund is immediately replaced by a good fund. 

From the basic theory of DTMC's, as in Theorem 4.1 of Ross (2003), we obtain the 

steady-state probability vector n = {TTC^S^D) by solving IT — irP under the condition 

that 7r<2 + 7T£ + 7TD = 1. The stationary probability vector ir for the transition matrix P in 

(2.24) is 

(l-p)(l-q-r) 
TTG 

q + p{l-q — r) 1 
TVS ~ 

P 
-, 7TB (2.25) 

2—p — r ' "'"' 2 — p — r 2 — p — r 

Our DTMC model uses both transition matrices. We use the absorbing transition matrix 

in (2.23) when we compute the expected return of a fund, while we use the ergodic transition 

matrix in (2.24) when we calculate the steady-state death rate and performance variance. 

We will act as if the fund earns a state-dependent fixed relative rate of return in each 

state. We must specify these relative rates of return. Let YQ, YS and Yp denote the relative 

rate of return in the states G, S and D, respectively. In other words, eYa, eYs and e D are 

the return at the end of one year in the states G, S and D, if one dollar is invested in a 

fund at the beginning of the year. Overall, we have six parameters: p, q, r, YQ, YS and YD. 
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2.6.3 The Four Model-Fitt ing Equations 

We first consider the death rate, which is defined as the proportion of live funds (in a good 

or sick state) that die during one transition period, which we take to be one year. For the 

transition matrix in (2.23), only sick funds can die in one transition. Thus, the death rate 

equals the product of the steady-state probability that a fund is sick times the transition 

probability from sick to dead. By (2.23) and (2.25), the death rate is 

S = ns-PS,D = n
l ~ V (l-q-r)=7rD. (2.26) 

2 — p — r 

We now introduce two equations determined by the persistence. For greater model 

flexibility, we allow different persistence in states G and S. The two DTMC-persistence 

equations are: 

7 G - y G = p-YG + (l-p)-Ys and (2.27) 

-ys-Ys = q-YG + r-Ys+(l-q-r)-YD. (2.28) 

We explain these DTMC-persistence equations as follows: In equation (2.27), the fund 

starts with state G\ in equation (2.28) the fund starts with state S. The left side describes 

expected return in the next period calculated using the relevant persistence factor, whereas 

the right side calculates expected return in the next period using the transition probabilities 

of the DTMC in (2.23). 

Our fourth equation is for the steady-state variance of the annual returns i?,j in (2.10). 

Notice that its variance equals the variance of B{, defined in (2.6). Since we are working with 

return rates relative to the mean, the variance of the steady-state rate of return coincides 

with the second moment. Thus, the variance equation is 

a 2 = 7 r G - y J + 7 r 5 - y | + 7 r c - y ^ . (2.29) 

2.6.4 Explicit Formulas for the Transition Probabilities 

We now derive formulas for the DTMC transition probability parameters p, q and r in terms 

of YQ, YS, YD, 7 G , 75 and 5 using the three equations (2.26), (2.27) and (2.28). 
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The three formulas. Assuming that 7 c 75, 5, YQ, Y$ and YD are specified, the three 

equations in (2.26), (2.27), and (2.28) produce three equations in the three unknowns p, q 

and r. We first observe that the variable p can be solved from the single equation in (2.27), 

because that is a single equation for the single unknown variable p. The solution is 

P=lGYo-Y? • (2-30) 

Having found the explicit expression for p in (2.30), we substitute in for p to obtain two 

equations in the remaining two unknowns q and r. Indeed, given p, we can rewrite each of 

the two remaining equations to express q directly as a function of r. First, from (2.26), we 

get 

9 S g ( r ) = = 1 " r - i - p ^1~S{r^p)-r (i-p) • (2"31) 

Since S < 1 — p by (2.26), the function q(r) in (2.31) is necessarily strictly decreasing in r . 

Next, (2.28) can be rewritten as 

- , s_ -ys-Ys-Yp- r(Ys - YD) _ ( 7 g - r)Ys - (1 - r)YD 
q ~ q [ r ) - YG-YD ~ YG^YD • [2-62) 

Combining the two equations (2.31) and (2.32), we get an explicit expression for r, first in 

terms of p and then in terms of the basic model parameters, namely, 

(l-p-6(2-p)\ _ (7s-Ys-Yn\ f (1-6)(1-1G)YG-S(YG-YS)\ _ (1S-YS-Y„\ 

r = \ X~P ) \ Yc-y° ) = V ( i -7G)r0 ; V YG-YD ) 
(1-P-S\ _ (Ys-Yn\ ({l-ra)Yg-5(YG-Ys)\ _ (Ys-Yn\

 { ' ' 

\ 1-p ) \YG-YD) \ ( 1 - 7 G ) V G ) \YG-YD) 

To be feasible, we of course need 0 < q < 1 — r and 0 < r < 1. Formulas (2.31) and (2.33) 

simplify when 5 = 0; see §A.4 in the Appendix. 

By further analysis, we can determine what parameter values can occur; see §A.6 in the 

Appendix for a detailed analysis. Figure 2.6 shows the three parameters as a function of 5 

with YG = 0.067, Ys = —0.15, YD — —0.20 and 'JG = Is — 0.5. From the analysis, it can 

be shown that there is an upper limit on how high the death rate 5 and the persistence 7 

can be. For the other parameters we consider, the maximal possible death rate is 6 = 0.07. 

2.6 .5 D e t e r m i n i n g Al l M o d e l P a r a m e t e r s 

We now put everything together to develop an algorithm for computing all the model 

parameters. 
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A n iterative algorithm. There are several ways we may proceed. We choose to specify 

Ys and YD in addition to 5, 7 G , 75 and a. (This decision is supported by the fact that 

the model parameters are less sensitive to Ys and Yp than to YQ, as we will see in §2.7.) 

Specifying these two quantities determines all the parameters. We then calculate the model 

parameters iteratively. We do so by guessing YQ, which enables us to directly calculate the 

DTMC parameters p, q and r, and then the steady-state probability vector n. Given n, we 

can then calculate a from (2.29). We then iterate until the calculated a agrees with the 

initially specified value of a. 

Although it is not entirely evident from the equations, because n depends on YQ too, 

our calculations indicate that a is an increasing function of YQ, SO it is easy to find the 

appropriate value of YQ, e.g., by performing bisection search. A simple plot of a versus YQ 

verifies this property, and reveals the appropriate value of YQ. We illustrate in Figure 2.7 

below for the special case in which Ys = —0.15, YD = —0.20, 7 G = 7s = 0.5 and 5 = 0.03. 

Denominat ing in terms of a. For additional insight, it is helpful to express our returns 

in units of the standard deviation a. We can divide through by a2 in (2.29) to obtain 

1 = TTG • (YG/a)2 + ns • (Ys/a)2 + 7tD • (YD/*)2 . (2.34) 

Observe that the steady-state probability vector % in (2.25) and the death rate 5 in 

(2.26) depend only on DTMC parameters p, q and r, while the equations (2.30), (2.32) and 

(2.33) for p, q and r are invariant under scale multiples of YQ, YS and YD-

Paralleling Figure above, it is useful to see how YQ/CT behaves as a function of a when 

we fix Ys/a and Vb/<r in addition to 5 and 7. It turns out that , after fixing Ys/a = —1.5 

and YD/O — —2.0, the value of YQ/G is constant when 5 = 0 and almost constant (very 

weakly increasing) when 5 > 0. For the special case in which Ys/a = —1.5, Y b / a = 

-2 .0 , 7 G = 75 = 0.5, and 5 = 0.03, YG/a « 0.685 for a ranging from 0.07 to 0.13. It is thus 

convenient and useful to set Ys and YD proportional to a. We hereafter set Ys = —1.5a 

and YD — —2.OCT for our analysis. 
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2.6.6 Numerical Examples 

We now consider some numerical examples. Our base case is S = 0.03, 7G = 75 = 7 = 

0.5, a = 0.1, Ys = -1.5a - -0.15, and YD = -2.0a = -0.20. If we try YG = 0.685a = 

0.0685, then we get p = 0.8432, q = 0.3719, r = 0.5030, and a = 0.1001. 

Table 2.2 shows parameter values for various 5, 7 c 7s, with Ys, YD and a fixed as 

above, the return YQ is calculated iteratively by the method above. The last line of the 

Table 2.2 shows that r is negative. If 7G = 7s = 0.5, our numerical analysis shows that r 

reaches 0 and becomes negative when 5 is above 0.07. 

Table 2.2: Parameter value sets 

5 

0.00 

0.03 

0.06 

0.07 

0.00 

0.03 

0.06 

1G 

0.5 

0.5 

0.5 

0.5 

0.6 

0.6 

0.6 

7s 

0.5 

0.5 

0.5 

0.5 

0.4 

0.4 

0.4 

a 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

YG 

0.067 

0.0685 

0.070 

0.075 

0.076 

0.077 

0.0775 

YS 

-0.15 

-0.15 

-0.15 

-0.15 

-0.15 

-0.15 

-0.15 

YD 

-0.20~ 

-0.20 

-0.20 

-0.20 

-0.20 

-0.20 

-0.20 

Calculated a 

0.1002 

0.1001 

0.1001 

0.1001 

0.1000 

0.1002 

0.1000 

P 

0.8456 

0.8432 

0.8409 

0.8401 

0.8655 

0.8643 

0.8637 

q 

0.3456 

0.3719 

0.4207 

0.4474 

0.3982 

0.4320 

0.5068 

r 

0.6544 

0.5030 

0.2282 

0.0796 

0.6018 

0.4069 

-0.0127 

2.6.7 The Lockup Premium Calculation 

To calculate the lockup premium, we use formula (2.13). Without extended lockup, we 

start with a good fund, so that R\ for 1 < i < n are i.i.d. random variables each with two 

possible values. Let St denote one of the three possible states at year t (t > 1) : G, S or 

D. We define So as the state of a fund at the beginning of the first year. As mentioned in 

§2.1, we assume that SQ = G. Then, 

E e£r= 1 R\ | 5 o = G l = (peYG + ( 1 _ p)eYsy = J 2 [ n ) pk(l - p)n-ke{kYG+{n-k)Ys)_ 

fe=0 

(2.35) 
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The corresponding expectation for the fund with extended lockup is more complicated, 

but it can be calculated recursively. It is immediate to see that R\ = R\, resulting inp i = 0. 

We define 

m(t, s)=E [ e ^ = i R?\S0 = G,St = s\- Pj>s, (2.36) 

where P*, the tth power of matrix P defined in (2.23), represents the probability of reaching 

St from G at tth year. Then, we obtain the following recursion formulas 

rn(t,G) = peYGm(t-l,G) + qeYam(t-l,S), 

m(t,S) = (l-p)eYsrn(t-l,G) + reYsm(t-l,S) and 

m(t,D) = {l-q-r)eYDm(t-l,S), (2.37) 

where m ( l , G) = peYa, m ( l , S) = (1— p)eYs and m ( l , D) = 0. Notice that if a fund becomes 

dead before year n, it starts with a good state. Furthermore, the new good fund is now 

under 1-year lockup instead of n-year. Because of this, care must be taken for a sample 

path once a fund becomes dead. We finally have 

E e £r= , f l ? |5 0 = = G r l =m(n,G) + m(n,S) + J2m(t,D)(peYG+ (l-p)eYs)n *. (2.38) m{t,U) \pe'u + (1 -p)e'a"n 

i=2 

For example, if we set a = 0.1, YQ = 0.685<r, Ys = —1.5a, YD = —2.0a, 7 G = 75 = 

7 = 0.5 and 6 = 0.03, we get p = 0.8432, q = 0.3719 and r = 0.5030 from §2.6.6. The 

difference between a 2-year lockup and a 1-year lockup is 0.66 percentage points of return 

whereas the difference between a 3-year lockup and a 1-year lockup is 1.01 percentage points 

of return. Figure 2.8 shows the lockup premium calculated from (2.37) and (2.13) as well 

as the analytical approximation for S = 0 in (2.14). It is observed that both the one-term 

and two-term analytical approximations in §2.5 constitute upper bounds for the lockup 

premium. 

2.7 Sensitivity Analysis for the D T M C model 

The mathematical models developed here are useful to estimate how the lockup premium 

depends on the different variables. We describe highlights of such analyses here and present 
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more details in the appendix. Our results here are related to the standard base case with 

j G — -ys = 7 = 0.5, a = 0.1, Ys = — 1.5cr, YD = —2.OCT and S = 0.03, as in the second row 

of Table 2.2. 

Figure 2.9 (i) shows the lockup premium for five values of 7: 0.1, 0.2, 0.3, 0.4 and 0.5 

while Figure 2.9 (ii) shows the lockup premium for five values of a: 0.05, 0.10, 0.15, 0.20 

and 0.25. In both cases, these changes produce minor changes in YQ and the other model 

parameters; see the Appendix A.7. 

We next consider how the DTMC model parameters p, q and r depend on the other 

driving variables. To supplement Figure 2.6 and the commentary in §2.6.4, Figure 2.10 

shows how these parameters p, q and r depend on 7 (assuming 7 G = 7S = 7) and each 

of the return values YQ, YS and YD, taken one at a time. We see that the model becomes 

unstable if 7 gets very large, but there is nice near-linear behavior for values of 7 < 0.5. 

We also see that the parameters p, q and r are considerably more sensitive to YG than the 

other two returns Ys and Y D . 

Lastly, we consider how the DTMC lockup premium for a fixed lockup period depends 

on three variables 5,7, and a. Figure 2.11 shows how the three-year lockup premium 

depends on two of the three variables while fixing the remaining variable. We see that 

the three-year lockup premium is reasonably well approximated by a linear function of 7 

and a, respectively; there is concavity in 7 but convexity in a. Also, the three-year lockup 

premium is relatively insensitive to 5. 

We remark that the lockup premium in the DTMC model can be approximated by 

a simple functional form of three variables 5,7, and a with the choice of Y$/a — —1.5 

and YD/<J = —2.0. The approximation with a simple functional form is helpful to quickly 

estimate how the lockup premium changes if the variables change. 

We had success fitting the simple product form of the three variables with an exponent 

for each variable for the fixed year lockup premium, denoted by i/>p(<5, 7, a) = a 5b-/ccrd. After 

taking logarithms, we can easily apply linear regression for the lockup premium values in 

the DTMC model to estimate parameters a, b, c and d. By that method, the three-year 

lockup premium is approximated by x$g. = 0.047 ^-011^0-69(j0.64 ^ ^ maximum error of 

0.0039 in the base case Ys/a — —1.5 and Y^/a = —2.0. The product approximation can 
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be extended to different lockup periods (n) and choice of Yg/cr and YD/a. See Appendix 

A.7.4 for further discussion. 

2.8 Conclusion 

As we explained in §2.1 and §2.3, we have defined the hedge-fund lockup premium as the 

average difference (per year) between the annual returns from investments in hedge funds, 

where one has a nominal one-year lockup and the other has an extended n-year lockup. 

(In doing so, we pointed out that we are not considering the lost opportunity cost of other 

investments, which may be very important.) We have developed DTMC models to estimate 

the hedge-fund lockup premium as a function of the length n of the extended lockup period 

and the model parameters. To account for immediate redemption of investment when a 

hedge fund fails, we include a death state in the model. The lockup premium represents 

the cost of not being able to switch from sick funds to good funds while under the lockup 

condition. We assume that the investor can redeem all his investment if the fund dies, so 

the effect of the lockup is mitigated by the death rate. That makes the lockup premium 

more difficult to analyze, justifying the care we give to it. 

In §2.6 we showed how the Markov chain model can be fit to basic hedge-fund perfor­

mance measures, notably, the persistence of relative returns, 7 (also allowing different -JG 

and 75), the standard deviation of returns, a, and the hedge-fund death rate S. We then 

have applied the models to estimate how the lockup premium depends on these important 

performance measures. The models quantify how the lockup premium increases as a func­

tion of the persistence factor 7 and the standard deviation a, but decreases as a function 

of the death rate 5; this is summarized by (??) for our main numerical example. 

As we explained in §2.1, the primary basis for our analysis is the persistence hypothesis: 

We postulate that there is a persistence in hedge fund performance within a particular hedge 

fund strategy category. Specifically, a persistence of 7 means that for every 1 percentage 

point you earn above the average in the current year, you expect to earn 7 percentage points 

above the average in the next year. 

As reviewed in §2.2 and §2.4, we examined the literature to see what other researchers 
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have concluded about hedge-fund performance persistence and the other hedge-fund per­

formance measures, but we found varying conclusions. Indeed, the literature indicates that 

persistence in hedge fund returns is highly controversial. We also performed our own sta­

tistical analysis using the TASS hedge fund data to estimate these hedge fund performance 

measures. We found strong evidence of persistence, but the specific persistence values can­

not be predicted with great confidence, as is evident from the scatter plots in Figure 2.2. 

Moreover, the most serious challenge to our analysis is not in the statistical conclusions 

based on the TASS data, which strongly support persistence, but instead in possible biases 

in the data, stemming from voluntary reporting. Thus we think that we have been more 

successful showing how the lockup premium depends on persistence and other the hedge-

fund performance measures than in determining the values of persistence and the other 

performance measures. 

The model fitting requires solving equations. For the DTMC, we were able to give 

explicit formulas for the three DTMC parameters p, q and r as a function of YQ, YS, YD, 

7 G and 75, but in order to calibrate the standard deviation of returns, <r, we needed to use 

an iterative method. We developed an efficient algorithm for doing the model fitting. 

We conclude that all three performance measures - S, 7 and a - can have a significant 

impact on the lockup premium, but we predict that the effect will be negligible if either 7 

or a is small. We estimated these key hedge-fund performance measures from the TASS 

database, but further work needs to be done to obtain more reliable estimates. 

There are a number of directions for further research. One weakness of our DTMC model 

is that it takes two years for a fund to transition from good to dead. We have developed an 

analogous three-state continuous-time Markov chain (CTMC) model that does not suffer 

from that shortcoming. Preliminary analysis indicates that the mathematical analysis is 

substantially more complicated, but the numerical results are not too different; we hope to 

report on these results soon. 

We have also shown how the persistence we have found in hedge fund relative returns can 

be exploited to develop a stochastic-difference-equation model for the sequence of relative 

returns (random variables) themselves in Derman et al. (2009b). The discrete time feature 

is included because of the infrequent reporting. 
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In this paper, we have considered a very specific application for our DTMC model, 

but it is evident that variants of the same model may be useful in other contexts. With 

richer data, it may be possible to include more states. Even for the specific hedge-fund 

liquidity premium problem we consider, one might exploit the approach here in other ways. 

For example, evidently a minor variation of the same procedure would work if, instead of 

relative returns, we focused on hedge fund alpha values, as in Jagannathan et al. (2006), 

Fung et al. (2008) and Kosowski et al. (2007). 
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Figure 2.3: Scatter plots and least-squares lines for positive current relative returns and 

negative current relative returns of hedge funds from 2000 to 2005 in four categories: (i) 

convertible arbitrage (ii) emerging market, (iii) event driven, and (iv) fund of fund. 
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Figure 2.4: The survival probability for the DTMC model when 5 — 0.03 and 0.06, for 

parameter values given in the Table 2.2. 
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Figure 2.5: Transition probabilities in the absorbing Markov chain 

p.q.r when Y = 0.067, Y = -0.15, Y = -0.20 
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Figure 2.6: The DTMC parameter values p, q and r as a function of S when YQ — 0.067, 

Ys = -0.15, YD = -0.20 and 7 G = 7 5 = 0.5 
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Y when a [0.08, 0.12], i=O.S, and 5=0.03 

Figure 2.7: The standard deviation of relative return a versus YQ when Ys = —0.15, YD 

-0.20, 7G = 7s = 0.5, and 6 = 0.03. 

(a) From 1 to 6 years (b) From 1 to 20 years 

Figure 2.8: The lockup premium function for DTMC model for three values of the hedge-

fund death rate 5 and analytic approximation of lockup premium (§2.5) for S = 0. The 

remaining model parameters are YQ = 0.067, Ys = —0.15, and Yp = —0.20 and JQ = 75 = 

7 = 0.5. 
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(a) 7: 0.1, 0.2, 0.3, 0.4 and 0.5 (b) a: 0.05, 0.10, 0.15, 0.20 and 0.25 

Figure 2.9: 

7 and a. 

The lockup premium for the DTMC model in the base case with five values of 

p.q.r for Y in the range [0.05.0.15] p.q.rforY inthe range [-0.15,-0.10] 

p.q.r lor Y in the range [-0.20,-0.15] 

Figure 2.10: The parameters p, q and r as a function of 7 in the base case for values of YQ 

ranging from 0.05 (starting value, denoted by S) to 0.15 (ending value, denoted by E), Ys 

ranging from —0.15 to —0.10, and YD from —0.20 to —0.15 
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For 6 = 0.00 to 0.08, (i) 7 = 0.1,0.2,0.3,0.4,0.5 with a = 0.1 (ii) a = 0.05,0.1,0.15,0.2,0.25 with 7 = 0.5 

For 7 = 0.1 to 0.5, (iii) S = 0.00,0.03,0.06,0.07 with a = 0.1 (iv) a = 0.05,0.1,0.15,0.2,0.25 with <5 = 0.03 

For a = 0.05 to 0.25, (v) 7 = 0.1,0.2, 0.3,0.4, 0.5 with 5 = 0.03 (vi) 5 = 0.00,0.03,0.06,0.07 with 7 = 0.5 

Figure 2.11: The three-year lockup premium for the DTMC model with Yg = —1.5a, YD = 

—2.0a. The lockup premium does not exist if q or r becomes negative. 
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Chapter 3 

A Stochastic-Difference-Equation 

Model for Hedge-Fund Relative 

Returns 

3.1 Introduction 

Despite the abundance of stochastic models for stocks, commodities and market indices, 

relatively few stochastic models have been developed for hedge funds. That is not entirely 

surprising since hedge funds are not too transparent; there are only a few sources of data, 

with infrequent voluntary reporting. We contribute by developing a stochastic-process 

model of the relative annual returns of a hedge fund, exploiting data from the Tremont 

Advisory Shareholders Services (TASS) hedge-fund database for the period 2000-2005. 

3.1.1 Relative Annual Returns Within the Fund Strategy 

The TASS database archives monthly returns and the managed asset value for each hedge 

fund. In addition, TASS also archives various fund-specific data, such as the strategy of 

the fund. The eleven strategies and the sample size for each are given in the first and 

second columns of Table 3.1; we will explain the rest of Table 3.1 later. (The appendixes 

of Hasanhodzic and Lo (2007) and Chan et al. (2006) describe the hedge-fund strategies.) 
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Table 3.1: Estimated persistence 7 and auto-correlation p for the eleven strategies. 

Strategy Sample 7 from 7 from ratio of p 

Size regression1 exp. returns2 auto-correlation3 

Convertible 

Dedicated Short 

Emerging Market 

Equity Marcro 

Event Driven 

Fixed Income 

Fund of Fund 

Global Macro 

Long-short Equity 

Managed Future 

Other 

238 

29 

315 

268 

533 

193 

986 

166 

1658 

235 

167 

0.44±0.10 

0.49±0.38 

0.36±0.10 

0.09±0.10 

0.24±0.08 

0.29±0.14 

0.33±0.05 

0.13±0.15 

Q.15±0.Q4 

0.22±0.13 

0.41±0.15 

0.39 

0.44 

0.36 

0.12 

0.16 

0.38 

0.31 

0.14 

0.11 

0.17 

0.38 

0.49+0.09/-0.11 

0.16+0.25/-0.35 

0.32+0.09/-0.10 

0.12±0.12 

0.13±0.08 

0.37+0.12/-0.14 

0.31+0.05/-0.06 

0.06±0.15 

0.07±0.05 

0.21+0.12/-0.13 

0.39+0.12/-0.13 

1. 95% confidence interval for the regression coefficient 

2. Ratio of expected relative returns from the previous to current year for pairs of two successive years 

whose return values are both above the average. 

3. confidence interval of correlation coefficient from 95% confidence interval of Fisher-Z statistic in (3.24). 

In order to highlight differences in hedge fund performance within its strategy and 

to approach a stationary environment, we focus on the relative annual returns. We use 

geometric compounding to convert the twelve reported monthly returns into one annual 

return, i.e., 

Tannual = (1 + ^ l ) • (1 + r 2 ) • • • (1 + r 1 2 ) - 1 . 

We then obtain the relative annual returns by subtracting the average for the strategy for 

that year. 

We think of the TASS relative return data as being observations from a stationary 

discrete-time stochastic process {Xn : n > 0}, with Xn representing the relative annual 

return from year n. Assuming that the process {Xn} is indeed approximately stationary 

(which is made more plausible by our focus on relative returns), we combine all the data for 
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each category to estimate the distribution of the single-year relative return for each strategy. 

For each strategy, we seek a stochastic-process model that matches both the observed single-

year relative-return distribution and the observed dependence structure. To have a model 

useful for prediction, it is desirable that the stochastic process be a Markov process, with a 

state that is as simple as possible. 

Since we focus on relative returns, the relative-return distribution necessarily has mean 

0, so a key parameter of the distribution to be matched is the variance a1 = Var(Xn), but 

we also want to match the entire distribution as much as-possible. Indeed, in some cases 

we find that the return distribution has a heavy tail, consistent with an infinite variance. 

For a stationary stochastic process, a key parameter describing the dependence structure 

is the autocorrelation p = Cor(Xn,Xn+i) = Cov{Xn,Xn+i)/a2. Estimates of the auto­

correlation p appear in the final column of Table 3.1. However, we also want to match 

the full time-dependent behavior of the stochastic process as much as possible. To partially 

test the time-dependent behavior beyond the auto-correlation p, we evaluate the probability 

that the relative returns will ever hit specified levels within a five-year period. That also 

illustrates how the model can be applied. 

3.1.2 Persistence of Hedge-Fund Returns 

Our modelling approach is motivated by our observation of persistence in the relative re­

turns. Broadly, persistence in hedge-fund returns is a tendency for a fund which generates 

relatively high (or low) returns in a period to continue generating relatively high (or low) 

returns again in the next period. 

Persistence has been studied quite extensively within the hedge-fund literature, but 

it remains a controversial topic. A consensus has not yet been reached on the degree of 

persistence in hedge-fund returns. In fact, some studies did not find significant persistence; 

e.g., Brown et al. (1999), Capocci and Hiiber (2004), and Boyson and Cooper (2004). 

However, several studies have found evidence of strictly positive persistence, depending 

on the time period measured; Agarwal and Naik (2000) found significant persistence for 

quarterly returns, while Edwards and Caglayan (2001) found significant persistence over 

one to two years, and Jagannathan et al. (2006) found significant persistence over three 
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years of returns. For hedge-fund indexes, Amenc et al. (2003) found statistically meaningful 

persistence for most of the strategies. 

In this chapter, we consider persistence in the (relative) returns. (It is important to note 

that others have looked for persistence in different ways; e.g., Jagannathan et al. (2006) 

is about alpha persistence.) We say that there is a persistence factor of 7 if for every 1 

percentage point the fund makes above the average in the current year, it is expected to 

earn 7 percentage point above the average in the next year. For the stochastic process 

{Xn : n > 0}, the persistence implies that we should have the following relation between 

the conditional expected relative return at the end of the current year, given the previous 

relative return, and the previous relative return itself: 

£ [X n |X„_ i ] = 7 X n _ x (3.1) 

for all n and all values of Xn-.\. We estimate the persistence factors by performing a regres­

sion analysis. In particular, we combine the relative-return data for all pairs (Xn,Xn+i) 

and perform a standard linear regression. Our estimated persistence factors for the eleven 

hedge-fund strategies ranged from 0.11 to 0.49; estimates by two different methods appear 

in the third and fourth columns of Table 3.1. The 95% confidence intervals show that posi­

tive persistence is confirmed statistically for all but two strategies; See §3.4 for more on our 

data-selection and analysis procedure. 

In our statistical analysis we do find strong evidence for persistence, but we hasten to 

admit that the issue remains controversial. The voluntary reporting has led to questions 

about the reliability of the data. Possible biases in reported hedge-fund returns are dis­

cussed by Fung and Hsieh (2000) and Boyson and Cooper (2004). As we explain in §3.4.1, 

in our data selection procedure, we attempt to reduce the bias, but the TASS data should 

be regarded as somewhat unreliable. We emphasize that our primary goal is not to make a 

case for persistence, but instead is to show how persistence can be exploited, if it is there, in 

order to create a flexible and tractable stochastic-process model of hedge-fund returns. Our 

approach should also have other useful applications, where persistence may exist. We intro­

duce the model in the next section. In subsequent sections, we elaborate on the appealing 

mathematical structure of the model, we describe our data analysis methods and results, 

and we show that the model provides a flexible framework for fitting. 
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3.2 The Proposed Stochastic Difference Equation Model 

In order to capture the observed persistence in the performance of hedge-fund relative 

returns, we first propose the simple stochastic difference equation (SDE) 

Xn = 7 X „ _ ! + Bn, n> 1, (3.2) 

where 7 is a constant with 0 < 7 < 1, Bn is independent of Xn-\ and {Bn : n > 1} 

is a sequence of independent and identically distributed (i.i.d.) random variables, each 

distributed as N(0, a%), where N(a, b) denotes a normally distributed random variable with 

mean a and variance b. 

The SDE in (3.2) is a linear, recursive Markov process; it is also a first-order autoregres-

sive process. Moreover, the SDE in (3.2) is a natural discrete-time analog of the familiar 

continuous-time stochastic differential equation 

dX{t) = -vX{t) + acdB(t), (3.3) 

where {B(t) : t > 0} is a standard Brownian motion, commonly used in finance, as can be 

seen by subtracting X„_i from both sides in (3.2) to get 

X „ - X n _ 1 = - ( l - 7 ) X n _ i + JBn, n>\. (3.4) 

We choose the discrete-time process in (3.2) instead of the continuous-time process in (3.3) 

because hedge-fund returns are reported much less frequently than stock prices. 

The initial SDE model in (3.2) is very appealing because, first, it clearly matches the 

persistence as specified in (3.1) with the same parameter 7 and, second, one need to choose 

only one remaining model parameter a2 in order to match the steady-state variance a2. 

That is easily done, because for the model (3.2) it turns out that one variance must be a 

constant multiple of the other: 

Moreover, as a consequence of (3.2), the distribution of Xn (assuming stationarity) must 

itself be normal, distributed as N(0, o2j{\ — 72))- Both these conclusions are demonstrated 

in S3.3. 
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This is a beautiful simple story when it works. Clearly, it works (from this preliminary 

checking) if indeed the two variances are related by (3.5) and the steady-state distribution 

of the relative returns is approximately normal. Fortunately, for some hedge fund strategies, 

we find that both conditions are satisfied reasonably well. Moreover, we can go beyond the 

distribution of relative annual returns to check the time-dependent behavior. In §3.3 we 

show that in steady-state, the SDE in (3.2) necessarily has autocorrelation equal to the 

persistence: 

autocorrelation = p = 7 = persistence factor. (3-6) 

This special relation in (3.6) turns out to match the TASS data remarkably well, given the 

limited data, as shown in Table 3.1, which displays estimates of both p and 7. 

We find that the simple SDE model in (3.2) provides a remarkably good fit for some 

of the hedge-fund strategies, e.g., for the emerging-market strategy. However, it does not 

provide a good fit for all strategies; e.g., for the fund-of-fund and event-driven strategies, 

largely because for those other strategies the empirical distribution of the relative annual 

returns is quite far from normal, having a heavy tail. Figure 3.1 substantiates this claim, 

showing the histogram and Q-Q plots of the relative annual returns of hedge funds within 

the fund-of-fund and emerging-market strategies. (The units are chosen so that a relative 

annual return of 0.10 corresponds to 10 percentage points above average.) 

We selected these two strategies for three reasons: (i) because these strategies have 

relatively large numbers of observations (ii) because they have relatively high persistence 

factors and (iii) because the return distributions exhibit very different tail behavior. Figure 

3.1 shows that the distributions for those two strategies differ significantly. The Q-Q plots 

in Figure 3.1 (c) and (d) show that the distribution of the relative returns for the emerging-

market strategy is close to normal, whereas for the fund-of-fund strategy it is not. 

The fund-of-fund strategy is somewhat special, involving investments in other strategies. 

It might be considered surprising that the relative returns from the fund-of-fund strategy are 

less normal, since they tend to be more diversified, but correlations among the returns from 

different strategies may possibly explain this phenomenon. Understanding the observed tail 

behavior of different strategies remains a problem for future research. We do emphasize 

that heavy tails are also observed in other strategies, such as the event-driven strategy, as 
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Figure 3.1: (a)(b) Histograms of 986 relative returns within the fund-of-fund strategy and 

315 relative returns within the emerging-market strategy from the TASS database. (A 

relative return of 0.15 means 15 percentage points above the average.) (c)(d) Q-Q plots 

comparing the model to the normal distribution. 

we show in Appendix §B.10. Corresponding figures for other strategies appear in Appendix 

§B.3. 

Just as for performance persistence, the distribution and other statistical properties of 

hedge-fund returns are not yet well understood, despite the importance (Lhabitant, 2004; 

Kassberger and Kiesel, 2006; Tran, 2006). Several authors have reported that the normal 

distribution may not approximate hedge-funds returns well, primarily because of heavy tails 
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(Lo, 2001; Lhabitant, 2004; Tran, 2006; Geman and Kharoubi, 2003; Eling and Schuhmacher, 

2007). It should thus not be surprising that we find that the relative returns are reasonably 

well approximated by the normal distribution for some strategies, but not for all strategies. 

Consistent with our analysis, Amo et al. (2007) pointed out that autocorrelation, high-peak, 

and heavy-tail may be observed from the distributions of hedge-fund returns. 

Kassberger and Kiesel (2006) studied the distribution of daily hedge-fund indices within 

each strategy. Based on the daily indices data from March 2003 to June 2006, they show 

that the distributions of indices have heavy-tails by Q-Q plots. They claimed that a Normal 

Inverse Gaussian (NIG) distribution fits the distribution of indices well, since it may have 

heavy-tail and skewness depending on parameter values. 

3 .2 .1 A M o r e G e n e r a l S D E M o d e l 

The non-normal distribution shown in Figure 3.1 (c), and in other return distributions, 

leads us to look for other models. Fortunately, we find that a natural generalization of the 

simple SDE in (3.2) provides a robust and tractable model for capturing different behavior 

observed in the TASS data. As a generalization of the simple SDE in (3.2), we propose the 

SDE 

Xn = AnXn.x + Bn , n > 1 , (3.7) 

where An and Bn are independent of Xn-\ and {An : n > 1} and {Bn : n > 1} are 

independent sequences of i.i.d. random variables with general distributions, satisfying 

E[An] = 7 for 0 < 7 < 1, and E[Bn) = 0. (3.8) 

In going from (3.2) to (3.7), we have replaced the constant persistence factor 7 by the 

random persistence An, but the moment conditions in (3.8) imply that the basic persistence 

relation (3.1) still holds. Moreover, the autocorrelation still satisfies (3.6), as we show in 

§3.3. By allowing An and Bn to have general distributions, we have produced a much more 

flexible class of models. Fortunately, this class of models is also remarkably tractable, as 

was shown by Vervaat (1979), where many additional references can be found. 

We classify the specific models we consider by the assumptions we make about the 

distributions of An and Bn. When P(An = 7) = 1, we have a constant-persistence model; 
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when An has a nondegenerate distribution, we have a stochastic-persistence model. When 

Bn is normally distributed, we have a normal-noise model. To capture the heavier tails 

we see in the data, we also consider as distributions for Bn the Student-i distribution, a 

mixture of two distributions, an empirical distribution and a stable distribution. 

3.2.2 The Constant-Persistence Stable-Noise Model 

We highlight the constant-persistence stable-noise model, because it is now common to 

use stable distributions to represent heavy-tailed distributions, building on early work by 

Mandelbrot (1963), Fama (1965) and others; see Embrechts et al. (1997), Samorodnitsky 

and Taqqu (1994) and §4.5 of Whitt (2002) for general background. Indeed, there is now 

a vast literature on heavy tails in financial data; e.g., see Lux (1996), Rachev and Mittnik 

(2000), Cont (2001) and Gabaix et al. (2007). 

A random variable Y is said to have a (strictly) stable law if, for any positive numbers 

a\ and a2, there is a positive number c = c(a\, a2) such that 

a i^ i + a2Y2 = cY, (3.9) 

where Y\ and Y2 are independent copies of Y and = means equality in distribution. It turns 

out that the constant c must be related to the constants a\ and a2 by 

of + a% = c? (3.10) 

for some constant a with 0 < a < 2, called the index of the stable law. A random variable Ya 

with stable distribution having index a with 0 < a < 2 satisfies P(Ya > x)/x~a —» c + and 

P(Ya < —x)/x~a —> c_ as x —> 00 for some positive constants c+ and c_. Consequently, 

.E[|Fa|
p] < 00 for all p < a, but i£[|5^,|p] = 00 for all p > a. We will be considering a with 

1 < a < 2, so that our stable distributions will have infinite variance but finite mean, which 

we take to be zero. 

Just as for the normal distribution (which can be regarded as a special stable dis­

tribution), the structure of the SDE in (3.2) implies that the stochastic structure of the 

distribution of Bn is inherited by the distributions of Xn for the constant-persistence mod­

els; i.e., the distribution of Xn is again stable with the same index and skewness parameter; 
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that is, we have 

d / 1 ^1/a 

X™ = I 1 3 ^ ) B«> ( 3 J 1 ) 

as we prove in §3.3. We use this relation (3.11) in what we think are novel ways: We use 

(3.11) to test both the constant-persistence stable-noise model and the stable index a (using 

the persistence factor 7 already estimated); see §3.7. 

For the constant-persistence stable-noise model, the SDE in (3.2) also has the continuous-

time analog in (3.3), but where now {B(t) : t > 0} is a non-Gaussian stable Levy motion, 

as in Samorodnitsky and Taqqu (1994). More generally, when the random variable Bn 

has a non-normal distribution, (3.2) has continuous analog (3.3) where {B(t) : t > 0} is 

a Levy process; see Wolfe (1982). In §5 of Wolfe (1982), he shows how to construct the 

continuous-time analog from the discrete-time SDE if it is desired. By now, there is a 

substantial literature on non-standard stochastic differential equations in finance; e.g., see 

Barndorff-Nielsen and Shephard (2001) and Borland (2002). 

We will show that the constant-persistence stable-noise model is remarkably effective 

for the fund-of-fund strategy. Nevertheless, other versions of the model in (3.7) are worth 

considering as well, in part because they have finite variance, which allows us to use the 

observed variance a2 to calibrate the model. 

3.2.3 Previous Models of Hedge-Fund Returns 

A conventional assumption is that a firm's net asset value evolves in continuous time as a 

geometric Brownian motion. Following that convention, a log-normal distribution was used 

to model hedge fund net asset value by Atlan et al. (2006) and the risky investment the 

hedge fund holds by Hodder and Jackwerth (2007). However, the log-normal assumption is 

not empirically tested in those papers. 

Others have previously used Markov process models to model hedge-fund returns. Hayes 

(2006) used discrete-time birth-and-death process to calculate the maximum drawdown in 

hedge-fund returns, and used the autocorrelation condition to calibrate the model. In 

Derman et al. (2009a) we used three-state Markov chain models to estimate the premium 

from extended hedge-fund lockup. We used the same TASS data to calibrate that model. 

Several econometric models have been proposed as well. A seminal paper is Amin and 
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Kat (2003), which sought a trading strategy with cash and a market portfolio such as S&P 

500 to replicate the distribution of a hedge-fund's returns. If a replicating portfolio can 

be found, by considering the required initial investment in the replicating portfolio and 

the hedge-fund management fee, then it may be possible to evaluate whether or not an 

investment in the hedge fund is justifiable or not. A similar replicating approach is also 

found in Hasanhodzic and Lo (2007). They tried to replicate hedge-fund returns with six 

common risk factors such as the S&P 500, US Dollar Indexes, Bond index, etc, by means 

of linear regression analysis. Chan et al. (2006) is a paper closely related to Hasanhodzic 

and Lo (2007). However, the purpose of Chan et al. (2006) was somewhat different; they 

wanted to decompose the risk factors underlying the hedge fund in order to compare the 

systematic risks of hedge funds to that of other traditional asset classes. 

3.2.4 Applications of the Stochastic Model 

As usual, a stochastic-process model allows us to go far beyond a direct examination of 

historical data to ask various "what if" questions. There are many ways to apply the model 

to answer questions, which cannot easily be answered from the data directly. We might 

simply want to know the probability distribution of the relative return for a particular 

hedge fund over the following year, given all available past data. From the past data, we 

can observe the most recent relative return, say XQ = c. We would then apply the model 

in (3.7) to conclude that the relative return next year should be distributed as A\c + B\, 

where A± and B\ are the independent stochastic persistence and noise, respectively, for that 

hedge-fund strategy, whose distributions can be determined by data fitting, as described in 

this chapter. We could go further and calculate the discounted present value of the return 

stream over many years; see (3.22) - (3.23). 

We might want to invest in that particular hedge fund because we believe that it will 

be especially well managed. We could use the model to provide a "measurement-based" 

quantification of what we mean by good management. In particular, we may postulate 

that a good fund manager improves the fund performance in one or more of three possible 

ways: increasing the expected persistence 7 = -E^n] , reducing the standard deviation of 

the persistence aa = ^Var(An), or reducing the standard deviation of the additive noise 
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(j;, = ^Var(Bn). With the model, we can quantify the impact of such effects. We first fit 

the model to the data for that hedge-fund strategy in order to obtain random variables An 

and Bn. We then produce new random variables A'n and B'n consistent with the postulated 

consequences of good management. We then calculate future relative returns, both with the 

original model and with the revised model. In that way, we can estimate the value added 

by the good management. 

We illustrate with a concrete example: Suppose that the relative returns for a specific 

fund in the last year are XQ = c. We start by quantifying what it mean for a "good" manager 

to be effective. Suppose that we conclude that the impact of superior management should 

increase its nominal estimated expected persistence from 7 to I.57, reduce the estimated 

standard deviation of the persistence from aa to 0.8cra, and reduce the estimated standard 

deviation of the noise from from a^ to 0.5(7;,. As a numerical example, we choose the 

beta-persistence i-noise model developed in §3.6.2 for the fund-of-fund strategy (which has 

parameter values 7 = 0.33,aa = 0.0381,ab = 0.0642, and a = 50,/? = 101.52). We then 

choose new random variable A'n and B'n with 7 ' = 1.57,0"^ = Q.8aa,a'b = 0.5<7{, and define 

X'n based on the new parameter values. Then, algebraic manipulation yields a' = 84.75 and 

p' = 86.46. It is then immediate that E[X{|X£ = c] - E[Xi |X 0 = c] = (7' - j)c = 0.1650c, 

Var(Xi\X0 = c) - Var{X[\X'Q = c) = c2(0.36a2) + 0.75of = 0.0005c2 + 0.0031. We have 

thus shown how the model can be applied to quantify the impact of good management. 

3.3 Background on the General SDE 

The behavior of the general SDE in (3.7) is well described in Vervaat (1979); we will be 

stating implications from the general results there. We will be considering the standard 

(good) case in which the expectation .E[log (An)] is well defined (at least one of the positive 

part or the negative part has finite expectation) and the following (minimal) logarithmic-

moment conditions are satisfied: 

- 00 < E[\og (An)] < 0 and £[log+ (Bn)\] < 00 , (3.12) 

where log+(x) = max {0, log (x)}. Note that log(An) = —00 occurs if An = 0, which is a 

possibility we want to allow. That corresponds to no persistence at all. 
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Under condition (3.12), Vervaat shows that we have convergence in distribution Xn =s> 

Xoo as n —> oo, where the distribution of X ^ is independent of the initial conditions and is 

characterized as the unique solution to the stochastic fixed-point equation 

-^oo = AnXoQ + Bn, (3.13) 

where the random vector (An,Bn) is independent of X^ on the right. There is thus a 

unique stationary version of the process {Xn : n > 0}, obtained by letting the initial value 

Xo be distributed as Xoo, while being independent of A\ and B\. With our notion of 

persistence in mind, it is natural to go beyond condition (3.12) and assume in addition that 

P (0 < An < 1) = 1. That will immediately imply extra moment conditions we make for 

An below. But that extra assumption is actually not required. 

Moreover, we actually do not need to assume that An is independent of Bn, as we have 

done, but the strong results in Vervaat (1979) do require that the sequence {(An, Bn)} be 

a sequence of i.i.d. random vectors. It is worth noting, though, that the general model in 

(3.7) has been further generalized beyond Vervaat (1979). First, Brandt (1986) established 

results for the case in which independence for the sequence {(An,Bn) : n > 1} is dropped; 

he assumes only that it is a stationary sequence. Next Horst (2001) considers the time-

dependent version, allowing the distribution of (An,Bn) to depend on n. Finally, Horst 

(2003) embeds the model in a game-theoretic setting, letting the values of (An, Bn) depend 

on the strategic decisions of multiple players. These extensions are significantly less tractable 

than (3.7) here, but they open the way to interesting new applications. 

Given (3.12), we can also characterize the distribution of X^ via an infinite-series 

representation 

oo 

X00 = YJMA2-Ak^1Bk, (3.14) 
k=i 

where the series on the right converges with probability 1 (w.p.l). It is thus easy to approx­

imately generate samples from the distribution of X^ by considering a truncated version 

of the series. If \An\ tends to be relatively small, as with our persistence estimates, then 

relatively few terms are required. 

Moreover, it is easy to apply the stochastic fixed-point equation (3.13) in order to deduce 

that the steady-state value X^ is distributed simply as a constant multiple of Bn, as given 
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in (3.11), when Bn has a stable law. We have the following elementary proposition: 

Proposi t ion 3 .3 .1 . For the simple SDE in (3.2), if Bn has a stable law with index a, i.e., 

if (3.9) and (3.10) hold for 0 < a < 2 (with a — 2 being the case of a normal distribution), 

then 

y d ' 

i.e., (3.11) is valid. 

x°° = ( Y^T ' Bn' (3'15) 

Proof. First, since we are considering the simple SDE in (3.2), we have An = 7. Since the 

distribution of X^ is the unique solution to the stochastic fixed-point equation (3.13), it 

suffices to show that X^ = cBn satisfies equation (3.13) for some constant c, i.e., it suffices 

to show that 

cB = 1(cB) + Bn, (3.16) 

where B and Bn are independent random variables with the common distribution of Bn. 

Since Bn has a stable law with index a, we can apply (3.10) to get the equation ca = 

(7c)0 + l a , which has the desired value for c as its unique solution. • 

Important moment properties of the SDE in (3.7) are given in §5 of Vervaat (1979), but 

these require extra conditions on the moments of the model elements. Prior to the moment 

conditions made in (3.8), in addition to the conditions above, we assume the technical 

regularity conditions 

E[\An\] < 1, E[\Bn\] < 00 and E[\X0\] < 00. (3.17) 

Under these conditions, it follows that ^[|Xoo|] < 00 and JEJ[|X„|] < 00 for all n. By 5.2.1 

of Vervaat (1979), if (3.17) holds, then in general 

ElXoo] = 1
 E ^ \ . and E[Xn] -» E ^ } as n -> 00. (3.18) 
1 — E \An\ 

Since we assume condition (3.8) in addition to conditions (3.12) and (3.17), we can conclude 

that .Epfoo] = 0 and £[X„|] -> 0 as n -» 00. 

We will not want to go beyond these first-moment conditions for Bn in (3.17) when we 

consider stable noise, because then Bn will have infinite variance. However, for the finite-

variance case, we also assume that ^[A^] < 1, and -E[-B ]̂ < 00 and -E[^ol < °°- Then 
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5.2.2 of Vervaat (1979) provides the following important expression for the variance of the 

steady-state distribution: 

„2-Vnr(X ) - ^ - ^ W ~ ^ tt 19) 

where we have introduced the new notation a2
a = Var(An) and used the assumption that 

E[A n] = 7 in the final expression. Paralleling (3.18), it also implies the convergence 

Var{Xn) ->• Var(X00) as n -> oo. When P{An = 7) = 1, then (3.19) reduces to (3.5). 

We now exploit the variance limit above under the the moment conditions in order to 

characterize the auto-correlation of the stationary version of the stochastic process {Xn}. 

We will characterize the asymptotic behavior, with a non-stationary initial condition. For 

that purpose, assume that i?[Xo] = 0 along with the moment conditions, so that we have 

.E[Xn] = 0 for all n. Then the time-dependent auto-covariance is simply 

Cov(Xn+1,Xn) = E[Xn+1Xn] = ^E[X2
n) = jVar(Xn), (3.20) 

which implies that the associated auto-correlations satisfy 

. n , v V x Cov(Xn+1,Xn) VaHXn) 
pn = Cor(Xn+i,Xn) = -? ,=7\hir^(Y \ ~* 7 a s n "^ ° ° ' 

y/Var(Xn+1)Var(Xn) \ Var(xn+i) 

(3.21) 

We have thus shown for the general SDE model in (3.7) that p = 7, where p = p^ is the 

auto-correlation for the stationary version of {Xn}, obtained by letting XQ be distributed 

as Xoo, just as claimed in (3.6) for the simple SDE in (3.2). 

In our hedge-fund context it is natural to be interested in the discounted present value 

of a return stream. It is thus convenient that the discounting can be incorporated into 

our current framework. First, if we postulate a constant rate of interest r compounded 

continuously, so that the annual discounting factor is e~r, then the (random) present value 

of the entire relative-return stream and its conditional expected value are 0 0 

V{r) = yje-nrXn and E[V(r)\X0] = , *° r. (3.22) 
*—' 1 — ^e ' - ie~ 
n=l 

More generally, we may have random annual interest rate Rn in year n, so that the present 

value is 
00 n 

V = Y/(l[Rk)Xn'. (3.23) 
n = l fc=l 
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Given our model with specified distributions for An and Bn, a well-defined stochastic process 

{Rn : n > 1}, which could be (but need not be) a sequence of i.i.d. random variables with 

specified distribution, and the initial value Xo, we can easily determine the distribution of 

V by simulation. We can first generate a segment of the process {Xn} recursively, and then 

do the same for the sum in (3.23). Given typical discounting processes {Rn}, the series will 

converge quickly, so that truncated versions will yield good approximations. 

3.4 Empirical Observations from the TASS Data 

3.4.1 Hedge-Fund Data Selection and Analysis 

We first explain how we try to remove biases in the TASS data. We then describe the 

regression procedure to estimate the persistence factor. 

TASS differentiates between the date the fund starts reporting and the date the fund 

starts operating. When a fund starts reporting returns after operating for several months 

or years, the fund may simultaneously report several monthly returns at the time its first 

return is reported. It is then possible for the fund manager to report only good returns. 

Otherwise, if the returns are bad, the manager may choose not to report them. This 

phenomenon creates the so-called backfill bias, since the backfilled returns tend to be higher 

due to the missing bad returns. Fung and Hsieh (2000) calculate that the difference from 

actual returns and reported returns is about 3.6% per year from this reason. In order to 

at least partially address this problem, we consider monthly returns only after the fund's 

first reporting date. Similarly, if a fund's monthly returns are reported less than six times 

a year, we exclude these data, due to the possibility of hiding bad returns. 

We also considered the asset value managed by a fund. We treat all funds equally, 

without regard to the asset value, so we present a "fund view" as opposed to a "dollar 

view." However, we did start by removing very small funds from our sample. Specifically, 

we consider monthly returns only if the fund's asset value managed has reached 25 million 

dollars at least once, at which point we assume that the fund becomes mature, so that 

it can produce relatively stable returns. A similar data selection strategy was used by 

Boyson and Cooper (2004). To better understand this issue, we computed the average asset 
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value managed for each fund and plotted the distribution of the values; it is shown in the 

Appendix §B.2. As might be expected, the distribution of the sizes has a heavy tail. 

After selecting the monthly returns based on the above criteria, we proceeded to estimate 

the persistence factor by regression. In particular, we made pairs of two successive annual 

returns for each hedge fund from 2000 to 2005. Thus, there are possibly five pairs of annual 

returns of a fund, if it does not cease reporting during that period. (Thus, our sample sizes 

in Table 3.1 are the number of pairs in the strategy.) The monthly returns are annualized to 

measure the yearly persistence of returns, using geometric compounding. We next calculate 

relative annual returns for each fund by subtracting the average annual returns of the funds 

in the same strategy. The relative returns for two successive years are then coupled as a 

pair to estimate yearly persistence factor. In order to make meaningful pairs of relative 

returns for two successive years, the averages of annual returns for the first year and each 

strategy of the funds are calculated first. When calculating the average annual returns and 

the associated relative returns for the next consecutive year, we only include returns from 

the funds which existed and were not dropped from the TASS database during the previous 

year. Thus, the average annual return for any given year depends on whether that year is 

treated as an initial year or a next year. They are not necessarily equal, since some funds 

may start reporting to TASS in the next consecutive year. In this way, we finally construct 

pairs of two consecutive relative returns from 2000 to 2005 for each strategy of the fund. 

Before conducting regression, we also exclude pairs of returns with extreme values, 

depending on the distribution of the pairs of returns for each strategy category. Even 

one or two outliers can seriously affect the regression, especially if we do not have a large 

number of observations. Specifically, we excluded pairs of relative returns when one absolute 

relative return exceeds ± 30 % for the fixed-income and equity-macro and ± 40% for 

the convertible, dedicated-short-bias, and global-macro strategies. We also excludes pairs 

of relative returns exceeding ± 50% for the emerging-market, event-driven, fund-of-fund, 

long/short-equity, managed-future, and others strategies. (These percentages were chosen 

to be appropriate by visual inspection. The percentages are roughly equivalent relative to 

the overall standard deviation of the return distribution for the strategy.) On the positive 

side, this data-selection procedure helps us avoid data errors. On the other hand, this 
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data-selection procedure might lead us to underestimate heavy tails. As a consequence, our 

heavy-tail findings should be even more convincing. 

We conducted a linear auto-regression analysis with pairs of two successive years of 

annual relative returns. The coefficient from this linear regression, i.e., the least square fit 

is the calculated persistence. The regression analysis results in very low intercept for all 

strategy category. Thus, we finally conduct a auto-regression without intercept and consider 

only the coefficient term. The results are shown in the third column of Table 3.1. 

An alternative way to estimate the persistence factor is to consider the ratio of the 

next-year average returns to the current-year average return, restricting attention to the 

returns that are positive in the current year. The fourth column of Table 3.1 shows the 

ratio of two successive average returns restricting attention to the returns that are positive 

and negative in the current year, respectively. We observe that these alternative persistence 

estimates tend to be similar to the regression estimates. 

3.4.2 Persistence of Relative Returns 

We started by constructing scatter plots of the relative returns for each hedge-fund strat­

egy, using all pairs (Xn,Xn+i), and performed auto-regression analysis in that setting in 

order to estimate the persistence factor, which thus becomes the the regression coefficient. 

Figure 3.2 shows the scatter plots of the relative annual returns for the fund-of-fund and 

emerging-market strategies. A linear relationship is not overwhelmingly clear in Figure 3.2. 

Nevertheless, we do observe more pairs of returns in the lower left and higher right sides of 

the scatter plot, indicating the existence of persistence. We mention that the persistence 

factor may also be derived in another way. We can also estimate the persistence factor 

from the ratio of the two successive years' expected relative returns, when those values are 

both above the average. This directly measures the ratio of current year's expected relative 

returns to the previous year's expected relative returns, but we have yet to develop the 

statistical properties of this estimator. The estimated persistence factors by both these 

methods are given in Table 3.1. . 
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(a) Fund-of-fund strategy (b) Emerging-market strategy 

Figure 3.2: Scatter plots and auto-regression lines for relative returns from two successive 

years within (a) the fund-of-fund strategy and (b) the emerging-market strategy. 

3.4.3 Distribution of Relative Returns 

We now turn to the distribution of the relative annual returns. As illustrated by Figure 3.1, 

we constructed histograms showing the empirical distribution and constructed Q-Q plots 

to test for normality. As we have indicated before, the emerging-market strategy relative-

return distribution seems to be approximately normal, but the fund-of-fund relative-return 

distribution does not. The distributions and Q-Q plots for the other strategies are given 

in §B.3 of the Appendix. The Q-Q plots there show that the relative-return distribution 

for the global-macro strategy also is well approximated by the normal distributions, but 

all others have significant departures from normality in the tails. We also performed the 

Lilliefors test in Appendix §B.3, from which we conclude, statistically, that the relative 

returns from most of the strategies are not consistent with the normal distribution. (See 

Lilliefors (1967) for the details of the test.) In order to facilitate visual comparison with 

the normal distribution, we also plotted histograms from a simulation of i.i.d. normal 

random variable with the same sample sizes; see, Appendix §B.4. Finally, we note that the 

fund-of-fund relative-return distribution has a relatively high peak in the center. 
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3.4.4 Autocorrelation of Relative Returns 

In §3.3 we showed that the auto-correlation is equal to the persistence for the general SDE 

model in (3.7). Thus we want to see if that is true for the TASS data. To examine this 

issue, we estimate the auto-correlations in the data, using the sample correlation coefficient 

estimator, denoted by r. In order to estimate the 95% confidence intervals for the auto­

correlation correlation, we use the well-known result that the Fisher Z statistic, defined 

by 

* - HB) • <»•*> 
is approximately normally distributed with mean zero and standard deviation az = 1/i/n — 3 , 

where n is the sample size; e.g., see Serfling (1980) or Lin (1989). 

From (3.24), we derive the confidence interval of the correlation coefficient p from the 

confidence interval of Z. The confidence interval is not symmetric around the observed 

sample autocorrelation coefficient r because r is a non-symmetric function of Z in (3.24). 

The last column in Table 3.1 summarizes the results. Table 3.1 shows that the two 95% 

confidence intervals - for the persistence 7 and the auto-correlation p - overlap significantly 

for most strategies. Thus we conclude that 7 and p coincide with each other and regard 

this as support for the validity of the SDE model in (3.7). Figure 3.3 adds by providing a 

graphical comparison of these confidence intervals. 

3.5 Testing the Constant-Persistence Normal-Noise Model 

We now describe how we evaluated the fit of the constant-persistence normal-noise model. 

This model has only two parameters 7 and o\, = SD(Bn) = y/Var(Bn), so the fit to the 

observed persistence 7 and standard deviation a = SD(Xn) is immediate. If we use only 

those two parameters, we obtain a perfect fit by applying (3.5) and letting a^ = (1 — 72)<r2. 

Such a fit seems to provide a reasonable rough model in all cases. 

In this section we want to evaluate the quality of that fit more closely. One test is 

the auto-correlation; the predicted relation between the autocorrelation and persistence in 

(3.6) holds more generally, and was just discussed above; Table 3.1 shows that the fit is 
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Figure 3.3: A comparison of estimates of the auto-correlation p and the persistence 7, 

showing the 95% confidence intervals for both. As before, the horizontal axis represents 

the strategy: 1. Convertible 2. Dedicated Short 3. Emerging Market 4. Equity Marcro 5. 

Event Driven 6. Fixed Income 7. Fund of Fund 8. Global Macro 9. Long-short Equity 10. 

Managed Future 11. Other 12. All 

pretty good, given the limited data. There are two principal remaining issues: (i) Is the 

relative-return distribution approximately normal? and (ii) Are the standard deviations 

(or variances) actually related by (3.5)? We have already addressed the first question in 

§3.4.3, finding that the return distribution is approximately normal in some cases, but not 

all. Now we turn to the one remaining question. 

As indicated before, assuming stationarity, we combine all the relative-return data to 

estimate the one-year relative-return distribution. The standard deviation of that distri­

bution is denoted by a; it is estimated directly by the sample standard deviation once the 

data have been combined. 

Testing is possible because we can also directly observe the values of the noise variables 

Bn. We estimate a^ = SD(Bn) = yJVar(Bn) by acting as if the model is valid, implying 

that Bn = Xn+i — ~fXn would be i.i.d random variables, using the previously estimated 

value of the persistence 7. We thus estimate o\) directly by the sample standard deviation 

as well, but we are here assuming the model to get the i.i.d. structure and we are using 

our estimate of the persistence 7. From (3.5), the constant-persistence normal-noise model 



www.manaraa.com

CHAPTER 3. A STOCHASTIC-DIFFERENCE-EQUATION MODEL FOR 
HEDGE-FUND RELATIVE RETURNS 64 

(and other finite-variance-noise models) predict that aja^ = \J\ji\ — 72). Since we have 

already estimated 7 from the data, we can compare aJG^ and ^ / l / ( l — 72) in order to test 

the validity of the model. 

Table 3.2 shows the results. From the last two columns in the table, we observe that 

Table 3.2: Estimation of the standard deviations a and <7(, to test the constant-persistence 

model. 

Strategy 

1. Convertible 

2. Dedicated Short 

3. Emerging Market 

4. Equity Macro 

5. Event Driven 

6. Fixed Income 

7. Fund of Fund 

8. Global Macro 

9. Long-short Equity 

10. Managed Future 

11. Other 

a 

return1 

0.0686+0.0068/-0.0056 

0.1393+0.0480/-0.0284 

0.1903+0.0161/-0.0138 

0.0801+0.0074/-0.0062 

0.1007+0.0064/-0.0057 

0.0693+0.0077/-0.0063 

0.0681+0.0031/-0.0029 

0.1070+0.0129/-0.0104 

0.1520+0.0054/-0.0050 

0.1265+0.0126/-0.0105 

0.1003+0.0120/-0.0097 

Ob 

noise2 

0.0579+0.0057/-0.0048 

0.1353+0.0466/-0.0275 

0.1797+0.0152/-0.0130 

0.0655+0.0061/-0.0051 

0.0884+0.0056/-0.0050 

0.0661+0.0073/-0.0060 

0.0565+0.0026/-0.0024 

0.1027+0.0124/-0.0100 

0.1376+0.0048/-0.0045 

0.1214+0.0121/-0.0101 

0.0976+0.0117/-0.0094 

ratio 

data3 

1.18 

1.03 

1.06 

1.22 

1.14 

1.05 

1.21 

1.04 

1.10 

1.04 

1.03 

ratio 

model4 

1.11+0.07/-0.05 

1.15+0.88/-0.14 

1.07+0.05/-0.04 

1.00+0.01/-0.00 

1.03+0.03/-0.02 

1.04+0.06/-0.03 

1.06+0.02/-0.02 

1.01+0.03/-0.01 

1.01+0.01/-0.01 

1.02+0.03/-0.02 

1.14+0.16/-0.08 

1. a: Standard deviation and 95 % confidence interval of the relative annual return 

2. <Tf,: Standard deviation and 95 % confidence interval of B„ = Xn — 7X„_i. 

3. Ratio: a/oi, observed from the data. 

4. Ratio: y / l / ( l — 72), ratio o/ob from the constant-persistence normal-noise model; see (3.5). 95% confi­

dence interval of the ratio is obtained from 95% confidence interval of 7 in Table 3.1. 

a/a;, and -\/l/(l — 72) are quite close for some fund strategies, but not for others. In 

particular, we see a good match for the emerging-market, fixed-income, global-macro, and 

managed-future strategies, but we see a poor match, in various degrees, for the others; the 

file:///J/ji/
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worst being the equity-macro and fund-of-fund strategies. 

Where the match is good, we need to also test the normal-distribution property, which 

we have done, and discussed in §3.4.3. Where the match is poor, we see right away that we 

need to consider a different model, which is what much of the rest of this chapter is about. 

3.6 Stochastic-Persistence Models 

In this section, we consider the stochastic-persistence models with various stochastic noise 

distributions as an alternative to the constant-persistence normal-noise model. Our analysis 

here illustrates the great model flexibility for fitting to data. Our goal in this section 

is to remedy both deficiencies found in the constant-persistence normal-noise model for 

some strategies: With the extra flexibility, we obtain a perfect match of the variance a2, 

remedying the problems observed in the last two columns of Table 3.2, and in addition seek 

a good match in the overall distribution. 

3.6.1 Beta Persistence 

In order to achieve this new flexibility in a controlled way, we assume that An has a beta 

distribution, which is a probability distribution that concentrates on the open unit interval 

(0,1). The beta distribution has two parameters, a and /3, with mean a/(a+/3) and variance 

af3/[(a+/3)2(a+(3 +1)]. We can choose a and (3 to match the mean £[.An] and the variance 

Var(An), provided that the variance is not too large. We remark that the beta distribution 

arises naturally in Bayesian frameworks when focusing on an unknown parameter lying in a 

fixed interval; e.g., see Browne and Whitt (1996). However, other persistence distributions 

can be used in essentially the same way. 

By introducing beta persistence, we have thus increased the parameters associated with 

the persistence from only one (7) in the deterministic case to two with this beta distribution. 

We can fit the beta parameters a and (3 to the mean and variance by 

,. _ Q / l a n d -2 _ ^ _ P _ 1 f 3 2 5 ) 
7 _ l + a//3 a n d C a ~ 7 2 " a(a + P+l)- a U + 1 + i\ ' ^ 2 5 j 

From (3.25), we see that the mean 7 depends on a and j3 only through their ratio, while 
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c2, the squared coefficient of variation (SCV, variance divided by the square of the mean), 

is strictly increasing in both a and /3 for any given ratio a//3. 

The full beta-persistence stochastic-noise model has three basic parameters: a2, 7 and 

a2, but we only directly observe 7 and a2. We have used 7 to specify the mean E^An,]. We 

thus have only a2 to use in order to determine the two model variances a2 and a2. Hence, 

there is one extra degree of freedom. 

We apply the variance formula (3.19) to determine a relation that all these variances 

must satisfy. Formula (3.19) implies that we must have 

0 < a\ < (1 - 72)o-2 and 0 < a\ < 1 - 7 2 . (3.26) 

Given both a2 and a2, formula (3.19) gives a formula for a2. In summary, there is a 

one-parameter family of variance pairs (a2, a2) consistent with our data. 

We can draw some initial conclusions. First, if a2 = 0, so that An = 7 w.p.l, then we 

can estimate a2 directly by looking at Xn — 7 X n _ i , as we already did. By formula (3.5) 

or (3.19), we then should have a2 = (1 — 72)<72, but that is inconsistent with the results 

in Table 3.2. Hence we conclude that we do need to have stochastic persistence; i.e., we 

should consider some non-degenerate beta distribution for An. 

One way to proceed at this point is to exploit what we have done in the previous section, 

and assume that we have already fit the variance a2 by acting as if the persistence An were 

constant. In other words, we let a2 be the estimated variance of Xn — 7X„_i , using our 

estimate of the persistence 7. 

Given that we start with an estimate of a2 and have already estimated 7 and a2 by 

the methods already described, we can choose the variance a2 = Var(An) to satisfy (3.19). 

For the fund-of-fund return data, we have 7 = 0.33 from Table 3.1, while a — 0.0681 and 

Ob = 0.0565 from Table 3.2, so that our estimated beta parameters are, first, a2 = 0.2028 

and then a = 0.03 and j3 = 0.06. However, the result is not plausible, because these small 

values of a and j3 produce a strongly [/-shaped density for An; see Appendix §B.5. 

We deduce that we should consider larger values of a and /?, and thus smaller values for 

the variance a2 and larger values for a2. For given a, (3 is determined to match 7. From 

visual inspection, we estimate that a — 50 should be reasonable; see Appendix §B.7. 
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Once we have chosen a, that determines /3 and thus o^, which in turn determines a\ by 

(3.19). For a = 50, we get /3 = 101.51, a2
a = 0.0014 and ab = 0.9369cr = 0.0642. Having 

calibrated the model parameter values, we then approximate the random variable X^, by 

taking a truncated version of the infinite series in (3.14). In our context, where we always 

have 7 < 1/2, fewer than 10 terms suffices. We use only 5 for the fund-of-fund data with 

7 = 0.33. That yields the approximation 

Xoo « B1 + AlB2 + A1A2Bz + AlA2AzBi + AlA2AzAiB5 . (3.27) 

We get one realization from X^ by generating four independent copies of An and five 

independent copies of Bn. 

3 .6 .2 T h e B e t a - P e r s i s t e n c e N o r m a l - N o i s e a n d i - N o i s e M o d e l s 

So far, by this rather involved process, we have specified only the variance of the noise a2 = 

Var(Bn). A simple specific noise distribution with that variance is the normal distribution 

that we have been considering; we get it by simply assuming that Bn = N(0,cr%). For that 

special noise distribution, the single parameter a% fully specifies the noise distribution. We 

call this the beta-persistence normal-noise model. However, when we apply this procedure 

and apply simulation to estimate the relative-return distribution, we see that the return 

distribution remains too close to the normal distribution. That remains the case for a wide 

range of a values; See, Appendix §B.5. Thus we rule out the beta-persistence normal-noise 

model. Our analysis leads us to conclude that this beta-noise feature, by itself, does not 

address the heavy tails seen in the data for the fund-of-fund strategy. 

In order to capture the heavy tails in the observed relative-return distribution, we con­

sider non-normal noise distributions. In doing so, we build on our previous analysis. As 

before, we aim to match the estimated values of 7 and a. We exploit the beta persistence 

we have already constructed, with a = 50, a2 = 0.0133 and a^ — 0.0638. 

As a new candidate noise distribution, we propose the (Student)-i distribution, which 

is known to have a heavier tail than the normal distribution. Specifically, we assume that 

Bn = KT(U) where T{y) denotes a random variable with the standard ^-distribution having 

parameter u, which is commonly referred to as the degrees of freedom, and K is a constant 
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scale factor. Since we keep the beta persistence, we call the overall model the beta-persistence 

t-noise model. 

For v > 2, the variance of a i-distributed random variable T is v/(v — 2). Since E[Bn] = 

0, we can match the given variance via 

ol = Var{Bn) = E[B2
n] = E[K2T2} = ~ . (3.28) 

We first use v as a parameter to choose in order to select the desired shape of the distribution 

of Xn, consistent with a fixed first two moments of Bn (mean 0 and variance a%). We 

then use n to match the observed variance. Thus, for any given v, n is determined by 

K = ab^{v-2)/v. 

Figure 3.4 shows the simulated distribution of the relative return Xn from the beta-

persistence t-noise model with An = Beta(50,101.51) and Bn = 0.0278 -T(2.4) compared to 

the observed relative-return distribution for the fund-of-fund strategy. Comparing Figures 

3.1 and 3.4, we see that the beta-persistence i-noise model approximates the observed 

relative-return distribution much better than the constant-persistence normal-noise model 

does. The two-sample Kolmogorov-Smirnov test also statistically shows that we cannot 

reject the hypothesis that the simulated data and empirical data come from the same 

distribution, with p value of 0.3080 (The high p value indicates that we cannot reject the 

hypothesis that the two random variables are drawn from the same distribution; e.g., see 

Massey (1951).) 

However, looking closely at Figure 3.4, we see that the observed relative-return distri­

bution still has heavier tails than predicted by the model, especially in the left tail. That 

conclusion is confirmed by the Q-Q plot in Figure 3.4(c). 

3 . 6 . 3 T h e B e t a - P e r s i s t e n c e E m p i r i c a l - N o i s e M o d e l 

A relatively simple way to obtain a better fit to the data within the beta-persistence class 

of models is to let Bn have the observed empirical distribution for Xn — ^Xn-i, using the 

estimated value of 7. This automatically gives Bn and its estimated variance o\. It now 

goes further to directly match the shape. This procedure works quite well, as we show in 

Appendix §B.7. Overall, the approach works well if we are content to use the model for 
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(c) Q-Q plot comparing the model to the data 

Figure 3.4: (a) The relative-return distribution from the data within the fund-of-fund strat­

egy (986 observations), (b) Simulation estimate of the relative-return distribution (sample 

size 106) using the beta-persistence t-noise model, with the sample size of 106, with a = 50, 

/3 = 101.51, v = 2.4, k = 0.0278, 7 = 0.33 and a = 0.0681. (c) Q-Q plot of the beta-

persistence t-noise model to the data. 

simulation. However, we might want a parametric model, with not too many parameters, 

so we consider further refinements. 
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3.6.4 The Beta-Persistence Mixed-Noise Model 

Since the beta-persistence i-noise model did not adequately capture the heavy left tail of 

the observed relative-return distribution for the fund-of-fund strategy, we continue to search 

for a better parametric model. In order to better match this feature, we consider a mixture 

of two distributions for our noise distribution. We do this both to illustrate the flexibility 

of our general modelling framework and to obtain a better fit. 

Again building upon our previous fitting, we let the distribution of Bn be a mixture of 

an exceptional normal distribution with some small probability p and the t distribution with 

probability 1—p. We start with the beta stochastic persistence in order to calibrate the two 

variances a 2 and <r2, and then we introduce the t-noise distribution in order to capture the 

main shape of the return distribution. In addition, we now add a small normal component to 

capture the heavy left tail. We call this overall construction our beta-persistence mixed-noise 

model. 

The noise random variable Bn in this model can be defined explicitly by 

{ 

Bn = 

Z2 = N{n2, o~2) with probability p . 

Z\ — Ml + KT(V) with probability 1 — p 
(3.29) 

Here it is understood that Z\ represents the regular returns, while Zi represents the excep­

tional low returns. We intend to make the probability p small. 

From (3.29), we have six parameters to fit: p, n, v, fii, \i2 and 02- We start by controlling 

the overall shape. That is done by choosing the t parameter u, in the method just described. 

We then calibrate p by counting the number of relative returns less than — 2a. Then it 

remains to fit the four remaining parameters K,HI,[J<2 and 02- But now we can write down 

expressions for the mean and variance of Bn: 

E[Bn] = ( l - p V i + P M 2 = 0, 

at = E[B2
n) = (1 - p) ( « 2 ^ + 3) + p( /X2 + °- (3.30) 

Since we have two equations in four parameter values, we have two degrees of freedom. 

Thus, we fit n% and (72 directly from the data. We directly fit the mean and standard 

deviation of the relative returns counted for estimating p. In this way, we can fit p, \i2 and 
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(72 at the same time. Then, from (3.30), we can obtain explicit representations for /ii and 

n, namely, 

Mi = - W ( l -P) and K = ^[{u - 2)/i /( l - p)] (a2 - p(4 + a2) - (1 - p)tf) . (3.31) 

For the fund-of-fund relative returns, out of 986 data points in our sample, we find 18 

relative returns below — 2a = —0.1363. Thus our estimate for p is p = 18/986 = 0.0183. 

As indicated above, in this step we also select the mean and standard deviation of this 

"exceptional distribution." We find that the mean and standard deviation of those 18 

returns are /12 = —0.2746 and 02 = 0.0717. Finally, we fit the remaining parameters, 

getting \i\ = —0.0051 and K = 0.0232. Again, after calibrating parameters for Xn, we use 

(3.27) to generate realizations of the modelled stationary return XOQ. 

Figure 3.5 (a) and (b) shows the simulated return distribution for this beta-persistence 

mixed-noise model. We now do see a heavier left tail in the model, just like that in the 

data, but unfortunately now the left tail of the return distribution generated by the model 

now is heavier than the left tail of the observed distribution from the data. This actually 

should not be surprising because our model exaggerates the probability of a return below 

—2<T, including the ^-variable as well as the exceptional normal component. 

In order to reduce the gap between the model and the data in the left tail, we consider 

a new parameter fitting procedure that reduces p while keeping ^2 and 02 as specified. The 

new procedure starts from the given parameter values p, /Z2,o"2, MI> K a n d the simulation 

obtained from the fitting procedure stated above. We first calculate the probability of 

relative returns falling below the threshold in the model, denoted by / . Since (12 -C —2a 

and (72 <C (—2CT + /U2), we ignore the probability of exceptional random variables exceeding 

the threshold. Let t be the probability that i-distribution falls below the threshold (which 

we do not evaluate directly). From the definition of t and the observed / , we obtain 

p + (1 — p)t ~ / , which yields t m ( / — p)/(l —p)- To obtain a corrected model, we replace 

f by p and p by p', and have p' + (1 — p')t ~ p for t PS ( / — p)/(l — p). Combining these 

two equations, we get the following expression for p' (which is to replace p): 

, 2p - p2 - / 
p = j - — — . (3.32) 

Our revised model is (3.29) with p replaced with p' in (3.32). We assume that ^2 and 02 
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remain unchanged. We thus need to calculate new values of fi[ and K' via (3.31), using p' 

instead of p. 

Then, we perform simulation once more with new parameters. Since the first simulation 

has / = 0.0284, we obtain p' = 0.0081, ̂  = 0.0022 and K' = 0.0236 from the new procedure. 

We found that this procedure significantly improves the fitting. As shown in Figure 3.5, 

the left tail from the new procedure matches the data much better than before. 

3.7 The Constant-Persistence Stable-Noise Model 

The procedures in §3.6 introduced more and more complexity in order to obtain a better and 

better fit. A more parsimonious alternative is to directly address the heavy-tail property at 

the outset by using a stable distribution. In doing so, we have to abandon the information 

provided by the variance a2 and the other variances, because the stable distribution has 

infinite variance. We thus lose a convenient model parameter when we take this step. 

However, we gain simplicity, because we can use the constant-persistence model and 

avoid any representation of the distribution of An. Moreover, the stable distribution has 

the advantage of providing additional tractability. In particular, with constant persistence, 

stable noise provides the nice relation between the distribution of Xn and the distribution 

of Bn given in (3.11) and Proposition 3.3.1. That relation says that Xn will be distributed 

the same as a constant multiple of Bn. 

Indeed, Proposition 3.3.1 provides an ideal way to test whether the constant-persistence 

stable-noise might be appropriate. A simple test is to plot the distributions of Xn and Bn 

and see if they look similar. As noted before, we obtain Bn directly from Xn — ̂ Xn-\, using 

the previous estimate for the persistence 7. Figures 3.4 (a) and 3.6 (a) show the empiri­

cal distributions of Xn (stationary version) and Bn obtained from the fund-of-fund data. 

Clearly, these distributions look remarkably similar, although the Q-Q plot in Figure 3.6 (b) 

shows some discrepancy in the tails. Moreover, the relationship is further substantiated by 

Table 3.3, where the ratio of the quantile differences of these distributions are calculated at 

different levels. These quantile ratios constitute estimates of the proportionality constant 

c. These quantile ratios are consistently around 1.2, with some discrepancy again in the 
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(a) Beta-persistence mixed-noise model 
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(c) Beta-persistence mixed-noise model re-calibrated 
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Figure 3.5: (a) Simulation estimate of the relative-return distribution (sample size 106) using 

the beta-persistence mixed-noise model with 7 = 0.33, a = 50, v — 2.4, a = 0.0681, ̂ 2 = 

-0.2746,(T2 = 0.0717,p = 0.0186,m = -0 .0051 and K = 0.0232. (to be compared to 

Figure 3.4 (a)), (b) Q-Q plot comparing the model to the data, (c) (d) Simulation estimate 

of the relative-return distribution and Q-Q plot for the same model re-calibrated with 

p' = 0.0098,/4 = 0.0027, K' = 0.0237 in (3.32). 

tails. Thus, Figure 3.6 and Table 3.3 suggest that Xn = cBn approximately, where c is a 

constant whose value is about 1.2. We also performed the two sample Kolmogorov-Smirnov 

test to compare the distributions, and obtained a p value of 0.5196, which provides further 

support. 
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(a) Bn = Xn — 7-Xn_i from the data 
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(b) Q-Q plot comparing Xn to cB„ 

Figure 3.6: (a) Distribution of Bn = Xn — 7Xn_i for the fund-of-fund relative returns, to 

be compared to Figure 3.4 (a), and (b) Q-Q plot comparing the distributions of Xn and 

cBn with c = 1.2. 

Table 3.3: The Quantile Differences of Xn and Bn and Their Ratios 

Quantile Difference1 

55%-

60%-

65%-

70%-

75%-

80%-

85%-

90%-

95% 

-45% 

-40% 

-35% 

-30% 

-25% 

-20% 

-15% 

-10% 

- 5 % 

xn 

0.0111 

0.0210 

0.0327 

0.0425 

0.0566 

0.0709 

0.0907 

0.1211 

0.1887 

Bn 

0.0085 

0.0170 

0.0265 

0.0364 

0.0492 

0.0609 

0.0778 

0.1053 

0.1430 

Ratio 2 

1.3096 

1.2321 

1.2342 

1.1683 

1.1506 

1.1633 

1.1656 

1.1509 

1.3194 

1. Difference between two quantile values. 

2. Ratio: Quantile Difference for X /Quantile Difference for B. 
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Recall from our discussion in §3.1 that the index a of a stable law coincides with its 

tail-decay parameter (of the form Cx~a for some constant C). The conventional elementary 

way to investigate power tails and estimate the index a is to directly construct a log-log plot 

of the tails of the distributions. Figure 3.7 shows the log-log plots of the two distribution 

tails for the fund-of-fund relative-return data. (Figure 3.7 also shows corresponding plots 

for a model, to be discussed below.) We observe that the left tail of the return distribution 

is approximated quite well by the linear slope of —1.6, which implies that there is approxi­

mately a power tail and that a ~ 1.6. As we have observed before, the heavy-tail behavior 

is more evident in the left tail than in the right tail. The two sample Kolmogorov-Smirnov 

test result also shows high p value (0.1446), which statistically shows that the two samples 

could be drawn from the same distribution. (In Appendix §B.6 we provide log-log plots of 

the tails of the simulated distributions from the other models for contrast.) 

log-tog plot of left ta log-log plot of right tail 

*• *> A ^ ^ A A A S , ^ 

A Empirical Data 
Model Simulation 

A Empirical Data 1 
Mode! Simulation j 

A \ 

Figure 3.7: Log-log plots of the left and right tails of the fund-of-fund relative-return distri­

bution, from the TASS data and the constant-persistence stable-noise model with parame­

ters 7 = 0.33, a = 1.6, /3 = 0, k = 0.029. 

We now combine the last two observations to develop a test for the constant-persistence 

stable-noise model. On the one hand, we have directly estimated the stable index a from 

the log-log plots of the distribution tails (getting a ~ 1.6), but on the other hand, for the 

constant-persistence stable-noise model, the observed quantile ratio c m 1.2 also provides an 

estimate of the index a. That is true because, given the quantile ratio c and the persistence 
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7, we can solve for a in the equation 

ca = — - — , (3.33) 

obtained from (3.11). We see that the observed value c = 1.20 is consistent with the other 

parameter values: 7 f« 0.33 and a « 1.6. Thus the constant-persistence stable-noise model 

passes this test. 

Non-Gaussian stable laws actually have four parameters, and are commonly referred to 

by Sa(n, (3, fi); see Samorodnitsky and Taqqu (1994). (We use K instead of the conventional 

a to avoid confusion with the standard deviation considered previously.) As before, a is 

the index, which ranges in 0 < a < 2. The other three parameters are: the scale K, the 

skewness (3 and the location parameter fi. When the stable law has a finite mean, it is that 

mean. Since we are considering stable laws with finite mean, where that mean is zero, we 

always have /z = 0. For a > 1 and \i = 0, we have the scaling relation 

cSa{K,p,0) = Sa(cn,p,0) for all c > 0 (3.34) 

for all model parameters. Choosing the scale parameter K is like choosing the measuring 

units. In addition to the index, the shape is determined by the skewness parameter f3 which 

ranges in — 1 < ft < 1. From (3.34), we see that the scale has no effect on the index or the 

skewness. 

Given the index a, we also have available the two parameters K and /?. As a increases, 

the shape of the distribution is more centered. As /3 increases, the distribution is skewed 

more to the left. Thus we formulate the constant-persistence stable-noise model by letting 

Bn = n-Sa(l, {3,0). Using Proposition 3.3.1 ai 

persistence stable-noise model (3.2), we have 

Bn = K-Sa(l, (3,0). Using Proposition 3.3.1 and the scaling relation (3.34) for the constant 

d ( 1 ^ / a 
X ° ° = [ T ^ J « - 5 Q ( 1 , / 3 , 0 ) . (3.35) 

We emphasize that this characterization of the limiting distribution in the constant-persistence 

stable-noise model simplifies further analysis and simulation; e.g., we do not need the ap­

proximation formula in (3.27). 

We are now ready to consider specific parameter values for our constant-persistence 

stable-noise model. We can select the index from the slope of the log-log plots, as in Figure 
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3.7. We then can set the scale parameter K by looking at the quantile ratios. We have 

chosen the value K = 0.029. We can choose the skewness to match the shape. We compare 

plots of the distribution of either Bn or Xn to plots of stable distributions as a function of 

the skewness parameter /?. In this informal way, we picked /3 = 0; see, Appendix §B.8 for 

the details. 

Figure 3.8 (a) shows the estimated relative-return distribution from the calibrated 

constant-persistence stable-noise model. Note that the chosen value of K = 0.029 matches 

the peak of the distribution from the data and model reasonably well; see Figure 3.4 (a) 

for comparison. Figure 3.8 shows that the model approximates the empirical distribution 

reasonably well. However, Figure 3.8 (b) shows that the tails of the simulated distribution 

from the model fits the tails of the distribution from the data only roughly, not as good as 

Figure 3.5 (d). 

Now we further test the validity of the model by comparing the quantile ratio in Table 

3.3 and c in (3.35). Since the quantile ratio is estimated from the data and c is predicted 

by the model, if they coincide, the validity of the model is verified. It turns out that the 

model with calibrated a — 1.6 and 7 = 0.33, K = 0.029 from the data generates c = 1.1232 

which is consistent with Table 3.3. This provides solid support for the constant-persistence 

stable-noise model. 

3.8 An Additional Model Test: Hitting Probabilities 

In this section, we consider the probability that the hedge-fund relative return ever exceeds 

some level during the 5-year time period. Such hitting probabilities are important for 

risk management. We consider high or low levels of relative returns, measured in units 

of (sample) standard deviation a. By simply counting the number of hedge funds whose 

relative returns have ever reached the level during 5-year period (2000-2004), we calculate 

the hitting probability from the data. 

Table 3.4 shows the hitting probabilities of each level for five years from the data within 

the fund-of-fund strategy and the corresponding beta-persistence i-noise, beta-persistence 

mixed noise and constant-persistence stable-noise models. The probability estimate from 
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(a) Constant-persistence stable-noise model (b) Q-Q plot comparing model and data 

Figure 3.8: (a) A simulation estimate of the relative-return distribution (sample size 106) of 

the constant-persistence stable-noise model with a = 1.6,/3 = 0, K — 0.029 (to be compared 

to Figure 3.4 (a)), (b) Q-Q plot comparing the predicted relative-return distribution based 

on the constant-persistence stable-noise model to the empirical distribution from the fund-

of-fund TASS data. 

the data is the observed proportion of funds whose relative returns had ever hit the level 

during the entire five-year period, among the 92 total number of funds within fund-of-fund 

strategy in 2000. The initial relative return in the model simulation is set to have the 

stationary limiting distribution of each model, i.e., X^. 

We perform two different simulation estimates. First, in order to estimate the true hit­

ting probabilities, we generate 10,000 independent values of XQO for initial relative returns, 

using (3.27) and (3.35) and then use the recursion Xn — AnXn-\ + Bn to calculate 95% 

confidence interval of hitting probability throughout five years. Second, in order to assess 

whether the model is consistent with the data, given the small sample size, we simulate 92 

independent values of the X^ random variables as the initial relative returns in 2000 and 

then use the recursion formula of Xn = AnXn-i + Bn to determine the hitting probability 

within 5 years. We repeat 20 of these simulations and record the maximum and minimum 

hitting probability observed and investigate if the range of hitting probabilities includes the 

probability from the data. It is observed that the hitting probabilities for the high level fit 
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the probability from the data relatively well. However, all the first estimates predict higher 

hitting probabilities for the low levels than are predicted from the data estimates. Never­

theless, the range of probabilities from the 20 simulations includes the hitting-probability 

estimates from data in most cases. (See, also Appendix B.7 for corresponding results for 

the Beta-persistence empirical-noise model.) 

Table 3.4: Hitting probabilities of thresholds over a five-year period (2000-2004) 

3 <y 

2 a 

1 a 

-1 a 

-2 a 

-3 a 

0.0326 

0.0761 

0.2363 

0.2391 

0.0542 

0.0326 

N = 923 

[0,0.0435] 

[0.0326,0.1087] 

[0.1739,0.3478] 

[0.1848,0.3043] 

[0.0326,0.1413] 

[0,0.0543] 

N = 10,0004 

0.0280±0.0032 

0.0696±0.0050 

0.2569±0.0086 

0.2603±0.0086 

0.0718±0.0051 

0.0273±0.0032 

N = 923 

[0,0.0543] 

[0.0217,0.0761] 

[0.1304,0.2717] 

[0.1196,0.3152] 

[0.0217,0.1522] 

[0.0109,0.0978] 

N = 10.0004 

0.0174±0.0026 

0.0464±0.0041 

0.2012± 0.0079 

0.2028± 0.0079 

0.0797± 0.0053 

0.0516±0.0043 

N = 923 

[0,0.0870] 

[0.0217,0.1630] 

[0.1304,0.3696] 

[0.1739,0.3587] 

[0.0217,0.1087] 

[0,0.0652] 

N = 10,0004 

0.0326±0.0035 

0.0712±0.0050 

0.2593±0.0086 

0.2590±0.0086 

0.0670±0.0049 

0.0328±0.0035 

1. a = 0.0681, the observed standard deviation of the fund-of-fund relative returns. 

2. Number of funds that have ever hit the level for 2000-2004 divided by 92, the total number in 2000. 

3. Minimum and maximum of the probabilities from 20 simulations with sample size of 92 initially. 

4. 95 % confidence interval of hitting probability from simulation with sample size of 10,000 initially 

3.9 Conclusion 

In this chapter, we proposed a stochastic difference equation (SDE) of the form Xn — 

AnXn-\ + Bn to model the relative returns of hedge funds. In §3.2-§3.3 we showed that 

the model is remarkably tractable, with many convenient analytical properties. Afterwards, 

we showed that the model is remarkably flexible for model fitting by showing how it can 

be calibrated to the data from the TASS database from 2000 to 2005. The foundation of 

our approach is persistence. It is quantified in the model via 7 = E[An]. We presented a 

strong case for basing the model on persistence by showing that the observed persistence 

estimated from the data by regression is statistically significant for all but two strategies 
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(see Table 3.1). The persistence was found to range from 0.11 to 0.49 across the eleven fund 

strategies. 

For the emerging-market strategy, the parsimonious (two parameter) constant-persistence 

normal-noise model with An = 7 and Bn = N(0, o^) provides an excellent fit, with a% fit 

to the estimated relative-returns variance <r2 directly by (3.5). However, the constant-

persistence normal-noise model is not suitable for the fund-of-fund strategy, and most other 

strategies, largely because the relative-return distribution has heavy tails. However, we find 

that some strategies are well approximated by the beta-persistence normal-noise model. In 

particular, that is the case for the long-short equity strategy, as we show in the Appendix 

§B.9. We do a complete fitting for that strategy there. 

For the heavy-tailed distributions, we demonstrated the SDE model flexibility by show­

ing that a good fit can be obtained for the fund-of-fund relative-return process by choosing 

variables An and Bn in different ways. The beta-persistence mixed-noise model in §3.6.4, 

the constant-persistence stable-noise model in §3.7 and the beta-persistence empirical-noise 

model in Appendix §B.7 all produced remarkably good fits, given the limited and unreliable 

data. Each of these models has advantages and disadvantages: The empirical-noise model is 

evidently most accurate, but it is a complicated non-parametric model, which may only be 

useful in simulation studies. The stable-noise model has the most appealing mathematical 

form, but it is not as accurate and it cannot exploit the variance for fitting (since it implies 

infinite variance). The mixed-noise model falls in between: it has good accuracy and it is 

a parametric model that can use the variance for fitting, but the parametric structure is 

complicated, making it harder to use in mathematical analysis. But these three models are 

just a sample of what could be considered. They illustrate that our SDE model offers a 

flexible model for fitting. 

We paid special attention to matching the (assumed stationary) single-year relative-

return distribution, but we also evaluated the fit of the stochastic-process model over time. 

As shown in (3.21), the SDE model predicts that the autocorrelation coefficient should 

coincide with the persistence factor 7. Table 3.1 shows that is consistent with the data. In 

§3.8 we also showed that the model predicted 5-year hitting probabilities of high (or low) 

thresholds reasonably well too. The fit here was especially good for the beta-persistence 
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empirical-noise model, as shown in Appendix §B.7. In this test, our conclusions were not 

as strong as we would like because of the relatively small sample sizes and the somewhat 

unreliable data. We think that there is the potential for even better fitting with better 

data. 

Overall, we contend that the value of our proposed modelling approach has been demon­

strated. It should be useful in other financial contexts as well, wherever persistence may 

exist. As we explained in §3.2, our SDE is a discrete-time analog of the common stochastic 

differential equation, which should be regarded as an attractive alternative when time is 

naturally regarded as discrete. §3.2.4 contains a numerical example illustrating how our 

model can be applied to go beyond data description to answer various "what if" questions. 

There we briefly considered how the model might be applied to quantify the value of good 

fund management. 
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Chapter 4 

A Sequential Auction-Bargaining 

Model in Procurement 

4.1 Introduction 

Since procurement costs often constitute a large portion of a firm's total operating costs 

(Bonser and Wu (2001)), selecting suppliers with attractive prices is an important deci­

sion that a firm faces in managing its supply chain. The type of transaction method for 

conducting procurement varies greatly depending on the context, ranging from (i) pricing 

(including both static and dynamic pricing) to (ii) auctions and (iii) one-to-one bargaining 

(Elmaghraby et al. (2005)). While the posted price mechanism is popular in business-to-

consumer transactions, both auctions and bargaining are now widespread in business-to-

business procurement (Bajari et al. (2008)). Each of these three methods has been studied 

in the operations management literature, e.g., Federgruen and Heching (1999), Chen (2007), 

Chen et al. (2005), and Nagarajan and Bassok (2008), but we note that many transactions 

in business practice cannot simply be categorized as pricing, auctions or bargaining, as they 

may have the characteristics of multiple methods. There have been a number of papers that 

combine features of pricing and auctions, e.g., Caldentey and Vulcano (2007) and Gallien 

and Gupta (2007). In this chapter, we consider a procurement method that sequentially 

combines an auction and bargaining, where the outcome of the auction is not final but is 

subject to further negotiation. 
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The motivation for this chapter stems from our observation that the use of auctions 

in the procurement process often does not completely determine the final outcome of the 

procurement decision. Auctions perform poorly when the projects are complex and the 

contracts cannot be fully specified (Bajari et al. (2008)). Suppliers feel that the auction 

format of procurement erodes their control over the final price and "commoditizes" their 

products (Jap (2002)). However, it is quite common that a purchasing manager solicits 

bids from the pool of potential suppliers (either by telephone, mail, or Internet), and based 

on the bids that she has received, she decides with which buyers to examine closely and to 

possibly negotiate. The round of indicative bidding is valuable to the buyer in the case that 

the cost associated with studying a supplier as part of due diligence is high. For example, in 

the sale of Daewoo Motors in 1999, Ford bid in the indicative round between $5.4 and $6.3 

billion, higher than DaimlerChrysler-Hyundai's joint bid of $4.5 billion, and subsequently 

Ford was chosen as the sole bidder in the final negotiation phase (Ye (2007)). In a supply 

chain setting, the post-auction negotiation provides the buyer and the supplier with an 

opportunity to learn more about the costs, knowledge, and performance expectation (Dalya 

and Nath (2005)). 

Both auctions and bargaining are commonly used in practice, and have been thoroughly 

studied in the literature. Auctions provide efficiency and simplicity in connecting the buyer 

to the seller with the lowest cost (Manelli and Vincent (1995)), and the buyer prefers auc­

tions when she has relatively less information about the sellers' costs (Waehrer (1999)). 

There exists a vast amount of papers on the theoretical analysis of auctions in both the 

economics and the operations management literature; we refer the reader to Krishna (2002) 

and Menezes and Monteiro (2005) for a review of the auction theory and Myerson (1981) 

for the optimal auction design. The types of auctions include: first price or second price 

auctions, sealed-bid or open-bid auctions, and auctions with or without a reserve price. 

Another common way of determining the terms of trade (e.g., supplier selection and price 

decision) is bargaining, which occurs between the buyer and one or many sellers (Nagarajan 

and Bassok (2008)). According to Bajari et al. (2008), bargaining was used in 45 percent of 

procurement decisions for the public-sector non-residential construction projects in North­

ern California between 1995 and 2000. For more references in the bargaining literature, we 
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refer to Rubinstein (1982) or Osborne and Rubinstein (1990) for a general review and Wu 

(2004) for an emphasis on procurement. Examples of commonly used bargaining models 

include the ultimatum take-it-or-leave-it offers and the sequential alternating offers. 

While there are several papers that compare auctions and bargaining in terms of mini­

mizing the procurement cost, empirical and experimental studies yield no clear verdict. For 

example, Kjerstad (2005) argues from an empirical study of procurement contracts of med­

ical and surgical products that auctions do not provide significantly lower prices compared 

to bargaining. Bajari et al. (2008) empirically analyze contracts awarded in the construc­

tion industry, and they find that auctions do not perform well in some cases because of the 

insufficient number of bidders. In an empirical study of timber sales, Leffler et al. (2003) 

note that conducting an auction might incur a significantly high cost to the auctioneer 

if she does not use professional assistance from a forestry consultant; in this case, auc­

tions would be less preferable to bargaining. In an experimental study, Thomas and Wilson 

(2002) compare the first price auction to multilateral bargaining between a single buyer and 

multiple sellers where the buyer solicits price offers by showing each seller his rivals' price 

offers while restricting communication between sellers. They report that, with four sellers, 

the buyer's acquisition costs through auction and bargaining are almost the same. While 

the above-mentioned comparisons are with respect to cost, many papers make comparisons 

along other dimensions such as the quality of the product; see, for example, Manelli and 

Vincent (1995), Bonaccorsi et al. (1999), and Tunca and Zenios (2006). 

In this chapter, we consider a setting where a risk-neutral profit maximizing buyer 

procures an indivisible product from one of many competing suppliers. We propose a model 

that combines an auction and bargaining sequentially in two phases. The first phase is the 

standard auction, such as the first or second price auctions where one seller is selected among 

multiple competing sellers. At this time, while the buyer's value is public information, 

each seller's cost is private information unknown to other sellers and the buyer. In the 

second phase, the buyer bargains with the chosen seller over the final price of the product. 

We assume that, at the beginning of the bilateral bargaining, information regarding the 

seller's true cost becomes available to the buyer. This assumption is justifiable if the value 

and cost information can be accurately estimated (through the on-going supplier-customer 
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relationship, the maturity of the market, or an additional investigation as a part of due-

diligence) , or if such information is equally uncertain to both parties of bargaining. (The 

buyer's true value has already become public in the first stage - thus, the buyer does not 

have any information advantage over the chosen seller.) The outcome of bargaining results 

in a price that is between the seller's true cost and the buyer's valuation. During the 

bargaining process, the buyer has the option to purchase the product at the price that is 

equal to the seller's winning bid in the first phase. For this combined auction-bargaining 

system, we study the sellers' equilibrium bidding strategy in the first phase, and also the 

buyer's choice of the reserve price, if allowed. 

4.1.1 Literature Review 

While procurement systems that combine auctions and bargaining are not uncommon in 

practice, the literature on the analysis of such models is rather limited (Engelbrecht-Wiggans 

and Katok (2006)). Single-unit sequential auction-bargaining models with the first-phase 

auction and the second-phase bargaining have been studied by Bulow and Klemperer (1996), 

Elyakime et al. (1997), and Wang (2000). 

The seminal paper in this literature is Bulow and Klemperer (1996). They propose a 

sequential auction-bargaining model, where the winning bidder is determined by an open-

bid second price auction, followed by a take-it-or-leave-it offer by the auctioneer (which 

may be accepted or rejected by the only remaining bidder). The major result of this paper 

is that while the auctioneer's ability to make an ultimatum bargaining offer increases her 

expected profit, the amount of this increase is bounded above by the expected gain of 

having one additional bidder in the standard auction. (Thus, the buyer prefers having an 

additional seller in the auction as opposed to conducting the second phase of ultimatum 

bargaining.) While Bulow and Klemperer (1996) use the ultimatum bargaining model with 

incomplete information, we are able to incorporate the relative bargaining power of the 

buyer and the seller in a bargaining model with complete information. We also show that 

their major result mentioned above may not hold if a bargaining model other than the 

ultimatum bargaining is used. 

Elyakime et al. (1997) study a single-unit sequential model, where the first phase is the 
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first price sealed-bid auction where the auctioneer also submits a secret sealed-bid reserve 

price. If no bid meets the reserve price, then the second-phase bargaining takes place, 

and the trade occurs between the auctioneer and the most attractive bidder where the 

gains from the trade is split equally between them. Thus, the cost and value information 

becomes public at the beginning of the second phase (as in our model). They present an 

equilibrium bidding strategy as a solution to a first-order differential equation. Numerical 

results indicate that both the auctioneer and the bidders prefer this model to the auction 

model that does not have the possibility of second- phase bargaining. 

In the model proposed by Wang (2000), the buyer has a private valuation (unknown 

to sellers) and does not submit any bids in the auction phase. The seller with the most 

attractive bid becomes the winning seller. The buyer has the choice of either accepting 

the winning bid of the auction as the price of the product or entering into second-phase 

bargaining with the winning seller. In the latter case, the winning seller's cost becomes 

known to the buyer while the buyer's valuation remains private, and the second-phase 

bargaining is modeled as a Rubinstein-style dynamic game with one-sided uncertainty. For 

this model, the sellers' symmetric equilibrium strategy is given as a solution to a first-order 

differential equation. As his model is the closest to our model, we highlight the difference 

between the two models. (1) While the buyer's valuation is private in his model, we model 

her valuation as public information. (2) Whereas the buyer in his model decides whether 

to continue to the second phase where the winning seller's bid no longer has any effect, 

the buyer in our model always continues to the bargaining phase where the winning bid 

remains consequential and acts as an outside option. (3) While he models equal bargaining 

power between the buyer and the winning seller, we allow the possibility that the buyer may 

have stronger bargaining power than the seller. (4) While he considers only the first price 

auction in the first phase, we consider both the first price and the second price auctions. 

(Our analysis later shows that the second price auction generates more profit to the buyer 

than the first price auction.) (5) More importantly, while there is no closed-form bidding 

strategy in Wang (2000), we find an equilibrium bidding strategy in a closed form that is 

simple to analyze and intuitive to understand. 

While the above papers involve only a single unit, Salmon and Wilson (2008) consider a 
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sequential auction-bargaining model with two identical units. The buyer procures one unit 

through an auction in the first phase, followed by a second phase where the second unit 

may be procured through a take-it-or-leave-it offer from the seller with the second highest 

bid in the auction phase. They show the nonexistence of a pure strategy for the sellers. 

Experimental results indicate that the buyer's profit in this model is higher than in the 

sequential auction where the second phase is also conducted as an auction. 

In all of the auction-bargaining models mentioned thus far, an auction is followed by 

bargaining; we mention that Engelbrecht-Wiggans and Katok (2006) consider a model where 

bargaining precedes an auction. The buyer wants to procure multiple products from sellers, 

each capable of producing one unit. In the first phase, the sellers' costs have not been 

realized, and the buyer offers some sellers an opportunity in which they may commit to sell 

one unit at a price to be established later in the second-phase auction. These sellers are 

excluded from the second-phase auction, regardless of whether or not they have accepted 

the buyer's offer, and the second-phase auction is conducted as a generalization of the 

second price auction. In addition, the growing literature on the auctions with the buyout 

option ("buy it now" option) could be considered as a combined bargaining-auction model, 

where the buyout price acts as a take-it-or-leave-it offer before the bidders participate in 

the auction. It has been noted that when the bidders exhibit impatience over time, this 

option can increase the auctioneer's profit (Mathews (2004), Budish and Takeyama (2001), 

Hidvegi et al. (2006), Caldentey and Vulcano (2007), and Gallien and Gupta (2007)). 

4.1.2 Contribution 

There are a limited number of papers that combine auctions and bargaining, especially 

compared to the vast literature on auctions and on bargaining, and this chapter studies 

a sequential auction-bargaining model that complements existing models in the literature. 

Our model admits a symmetric equilibrium bidding strategy in a closed form. This is 

our main contribution. (In all existing auction-bargaining models, the bidders' equilibrium 

strategies are either simple truthtelling or unable to be expressed in a closed form.) As a 

result, we are able to compute the buyer's expected profit, and we show that she generates 

higher profit in the auction-bargaining model than in the standard auction or bargaining 
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stand-alone models. In the special case of uniform cost distributions, we show that the 

equilibrium strategy that we find is unique. Interestingly, the equilibrium bidding strategy 

in our model is closely tied to the standard results in the classical auction and bargaining 

literature. 

As our second contribution, we study the auction-bargaining model where the buyer 

announces a reserve price at the beginning of the auction phase. The reserve price increases 

the buyer's expected profit in this model, consistent with the auction model, and we show 

how to find the optimal reserve price. In the auction-bargaining model, we find that the 

buyer sets a reserve price that is less aggressive than in the standard auction-only model. 

We also characterize the sellers' equilibrium bidding strategies when the buyer's reserve 

price is present. 

Our third contribution is to compare the use of the first price auction and the second 

price auction during the auction phase of the model. While the expected profit of the 

buyer in a standard auction remains the same regardless of the auction format, we find 

that, in the sequential auction-bargaining model where the Revenue Equivalence Theorem 

does not apply, the expected profit of the buyer is higher when the second price auction is 

used in the auction phase than when the first price auction is used. Thus, a risk-neutral 

profit-maximizing buyer prefers the second price auction-bargaining model to the first price 

auction-bargaining model. 

The organization of this chapter is as follows. In Section 4.2, we describe the auction-

bargaining model in detail. In Section 4.3, we summarize some preliminary results in the 

auction and bargaining theory for further analysis. In Section 4.4, we study the auction-

bargaining model and in particular develop the sellers' symmetric equilibrium bidding 

strategies. Our analysis includes the use of the second price auction, the first price auction, 

and the buyer's reserve price. We consider extensions and variants of the auction-bargaining 

model in Section 4.5, and we conclude in Section 4.6. All proofs are in Chapter B of Part 

III, which is the appendix of this chapter. 



www.manaraa.com

CHAPTER 4. A SEQUENTIAL AUCTION-BARGAINING MODEL IN 
PROCUREMENT 90 

4.2 Model Description 

Suppose that a buyer (e.g., a manufacturer) wants to procure an indivisible product from 

one of n + 1 potential sellers (e.g., suppliers), where n > 1. The products offered by 

these sellers are identical, and the sellers are indexed by i = 1,2, . . . ,n + 1. Each seller 

i's opportunity cost of the product is drawn from a random variable Cj, and we assume 

that the distributions of Cj's are independent and identical, having the support of [c,c], 

where c > 0 and c < 00. Let F(-) and /(•) denote the cumulative distribution function 

and the probability density function of each C%, respectively. We assume that the ex post 

cost Ci of seller i is initially private information, but the distribution function F(-) is public 

information. It is convenient to define a random variable Y, which denotes the minimum of 

n independent and identically distributed random variables having the common distribution 

F, i.e., Y ~ m i n { C i , . . . ,Cn}. It follows that Y has the cumulative distribution function 

G(c) = 1 - (1 - F{c))n and the probability density function g(c) = n • (1 - F ( c ) ) n _ 1 / ( c ) . 

Also, let G(c) = 1 — G(c). For simplicity of the exposition, we assume that / (c ) > 0 for all 

c € [c,H}. Lastly, we denote an indicator function by /{ •} . 

The value of the product to the buyer is denoted by v. We assume that v is public 

information, thus known to every seller, and lies above the support of F, i.e., c < v < 00. 

(We can easily extend our model to the scenario where the value of the product is uncertain 

to both the buyer and sellers, in which case we use v to denote the expected value of the 

product for the risk-neutral buyer.) The assumption of publicly available v is applicable if 

the suppliers have long-term relationships with the buyer, if suppliers can infer the value of 

the product from market conditions, or if the value is equally uncertain to both the buyer 

and the suppliers. 

We take the viewpoint of the buyer, who wants to maximize her expected profit. Max­

imizing the buyer's expected profit is an objective commonly employed in the optimal 

mechanism-design literature. In this literature, a procurement mechanism refers to the 

determination of allocation and payment, where the outcome depends only on the bids 

submitted by the sellers. In this chapter, however, we do not restrict our attention to the 

class of procurement mechanisms; instead, we allow that the outcome may also depend on 

the sellers' costs, possibly by auditing private information. We use the term procurement 



www.manaraa.com

CHAPTER I A SEQUENTIAL AUCTION-BARGAINING MODEL IN 
PROCUREMENT 91 

system to refer to this broader class of procurement methods. Examples of procurement 

systems include auctions and bargaining (discussed in Section 4.3). 

In this chapter, we study a procurement system that combines an auction and bargaining 

sequentially. In our model, the first-phase auction is used to select the winning seller, and 

the second-phase bargaining determines the price (payment), which depends on both the 

bids submitted during the auction phase and the winning seller's cost. We call this an 

auction-bargaining (A-B) procurement system. In the first phase, each seller i observes his 

ex post cost Ci = Cj, which is private information known to him only, and then submits 

a sealed bid to the buyer. This bid represents a price at which the seller is willing to sell 

the product, should the buyer find it agreeable. The buyer selects the seller with the most 

competitive bid (i.e., the lowest bid price). Once the winning seller is chosen, the buyer can 

purchase the product at that price, or enter into the second-phase bilateral bargaining with 

the winning seller for a possibly better price. As soon as the winning seller is determined at 

the end of the first phase, and prior to entering the bargaining phase, we assume that the 

buyer discovers the true cost to the winning bidder either through additional investigation 

or auditing the cost structure of the seller. (The notion of a post-auction audit has been 

used in multi-attribute auctions; see the scoring rule auction by Che [11 and 12] and its 

application in Beil and Wein (2003), Cachon and Zhang (2006), Benjaafar et al. (2007), 

and Wan and Beil (2008).) We also assume that the buyer obtains this information without 

additional effort; we can easily extend our model to the case of positive cost associated with 

this additional effort by comparing it to the benefit of the bargaining phase. (Without the 

post-auction audit, the analysis of the model becomes quite involved as in Wang (2000), 

and it does not yield results that are as simple as those presented in this chapter.) At any 

time during the bargaining process, the buyer can purchase the product from the seller at 

the winning bid, which acts as an "outside option" that the buyer can exercise. Thus, the 

final price is bounded above by the winning seller's bid and below by the winning seller's 

cost. Since the auction phase of the A-B model is conducted using a first price sealed-bid 

format, we refer to this model as the first price sealed-bid A-B model, or simply the first 

price A-B model. 

If the first-phase auction is instead conducted using an open descending-price auction, 
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then we refer to this model as the second price open-bid A-B model, or the second price 

A-B model. Here, the buyer starts the bidding process at a high price, and continuously 

lowers the price. Each bidder is initially active in the bidding process, and continues to 

remain active as long as he is willing to sell the product to the seller at the current bid price, 

and drops out when the current bid is no longer attractive. The bidding stops when there 

remains exactly one seller, who becomes the winning bidder. The buyer enters a bargaining 

process with the winning bidder, and the winning bid acts as an outside option for the 

buyer, as in the first price A-B model. 

We remark that our intention is not to design the optimal procurement system, departing 

from the main focus of the mechanism design literature of economics. (For the buyer's profit-

maximizing mechanism in the presence of the post-auction audit, it is possible to design a 

mechanism where the audit eliminates information asymmetry and the buyer extracts full 

rent; see Eso and Szentes (2007). However, such a mechanism is relatively complicated and 

may not be suited for business practice.) Rather, we restrict our attention to the sequential 

auction-bargaining system, which is simple and easy to implement in practice. 

4.3 Preliminaries 

Both auctions and bargaining have been extensively studied in the literature. In this section, 

we summarize some of the results in the auction theory (Section 4.3.1) and the bargaining 

theory (Section 4.3.2), and we establish elementary properties. These results will be useful 

later in analyzing the auction-bargaining (A-B) system and also in comparing this system 

to the auction-only or bargaining-only systems. 

4.3.1 Auct ion 

In a single-unit procurement auction, also known as a reverse auction, many potential sellers 

bid for the right to sell to a single buyer. The seller with the lowest bid wins the auction, 

and the payment to the seller is set by the lowest bid (in the first price auction) or by the 

second lowest bid (in the second price auction). Under the assumption that the sellers' 

opportunity costs are independent and identically distributed, the auction has been well 
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analyzed in the literature (see, for example, a textbook by Krishna (2002)). We review 

some classical results here. 

We consider the symmetric bidding strategy, denoted by /3(c), where c is the ex post 

opportunity cost of a seller. Let TTA and LT̂  be the expected payment and expected profit 

made by the buyer. Recall that Cj's are independent and identically distributed, and G 

denotes the complementary cumulative distribution function of Y ~ m i n { C i , . . . , Cn}. 

L e m m a 4 .3 .1 . In the first price or the second price procurement auction without the buyer's 

reserve price, -

{ E [ y | y > c] in the first price auction 

c , in the second price auction 

TTA = (n+l)-E[E[Y-I{Y>Cn+1}\Cn+l\ 

UA = V-TTA • 

See, for example, Section 2.3 of Krishna (2002) for the proof of Lemma 4.3.1. Also, 

notice that as long as / (c ) > 0 for c G [c,c], /3(c) is a strictly increasing function of c. In 

the above lemma, the expected payment IT A made by the buyer is the same for both the 

first price and the second price auctions, and this result is a consequence of the celebrated 

Revenue Equivalence Theorem. 

In the auction theory literature, the analysis and optimization of the reserve price has 

been well-studied. Suppose that at the beginning of the auction, the buyer announces a 

reserve price r, above which she commits herself not to pay. Let ff be the symmetric 

equilibrium bidding strategy under the reserve price r in the auction only model. If r < c, 

the analysis uses /3r(r) = r as a boundary condition instead of /3(c) = c. Let r*A denote 

the optimal reserve price that maximizes the buyer's expected profit in the auction-only 

model. Let nA and Ur
A denote the expected payment and profit of the buyer, respectively. 

Note that the buyer can procure the product only if there exists at least one seller who bids 

below the reserve price r, which occurs with probability 1 — (1 — F(r))n+1. 

L e m m a 4.3.2. In the first price or the second price procurement auction with the buyer's 
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reserve price r, 

E[min{y, r}\Y > c] in the first price auction with c<c<r 

Pr{c) — \ c , in the second price auction with c<c<r 

00 , if c > r 

irA .= (n + l ) - E [ E [ m i n { y , r } . J { y > C n + i } | C n + i ] - / { C n + i < r } ] , 

UrA = [ i _ ( i _ F ( r ) ) n + 1 ] - t ; - ^ . 

Furthermore, the optimal reserve price r = rA satisfies 

F(r) 
v-r = —rj . 

See, for example, Section 2.5 of Krishna (2002) for the proof of Lemma 4.3.2. Also, 

notice that if F(r)/f(r) is weakly increasing in r, the solution to the above equation is 

unique. 

4.3.2 Bargaining 

We review Rubinstein (1982)'s bilateral bargaining model of the alternating offers under 

complete information. Consider a bargaining game between the buyer with the valuation v 

and the seller with the opportunity cost c, where v > c. Let 1 — A be the bargaining power 

of the seller, where A G [0,1]. (The bargaining power depends on the relative discount rates 

of the buyer and the seller, and also on which player first proposes a take-it-or-leave-it offer. 

If the seller proposes first, and 5s,5b G (0,1) denote the discount factors of the seller and 

the buyer, then 1 — A = (1 — 5b)/(l — 5s5b). Note that the seller's bargaining power 1 — A is 

increasing in Ss and decreasing in 6b.) We suppose that v, c, and A are public information. 

L e m m a 4.3.3. In the unique subgame perfect equilibrium of the alternating-offers bargain­

ing game, the pricing outcome function is given by 

7(c) = Ac+ {l-\)v. 

Thus, if the seller has as much bargaining power as possible, i.e., 1 — A = 1, the price 

outcome of bargaining is v, capturing all the gains from the trade and leaving zero profit 

to the buyer. The proof of Lemma 4!3.3 is standard and can be found, for example, in 
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Rubinstein (1982) and Osborne and Rubinstein (1990). Note that the seller makes profit of 

(1 — X)(v — c), which is bargaining power times the gains from the trade, whereas the buyer 

earns X(v — c). Lemma 4.3.3 implies that a strong bargaining power of the seller (with a 

low value of A) results in a high negotiated price 7(c). While the price depends on both c 

and v, we hereafter suppress its dependency on v for the simplicity of notation by treating 

the buyer's valuation v as fixed. 

We now consider the case with multiple sellers, in which the buyer bargains with the 

sellers in a sequential manner. As before, the buyer's valuation v is public information. We 

suppose that the opportunity costs and bargaining powers of the sellers (ci and 1 — Aj) are 

also public. (This is an additional assumption to those assumptions given in Section 4.3.1.) 

At any point, the buyer may continue bargaining with the current seller or discontinue 

the current bargaining and start bargaining with a new seller. Once the buyer aborts 

bargaining with a seller, she cannot re-enter another round of bargaining with the same 

seller at a later point in time. For our discussion in this section, suppose that the sequence 

of sellers for bargaining is exogenously fixed and that the objective is to minimize the buyer's 

payment (the cost of bargaining is negligible). 

To analyze this sequential bargaining game, we first consider a simpler case with two 

sellers. Let 7i(c) = Aj • c + (1 — Aj) • v, where 1 — Aj represents the bargaining power of 

seller i. If the buyer bargains with the second seller (seller 2) only, then the outcome of the 

price is 72(02). Thus, in bargaining with the first seller (seller 1), the buyer has an option 

of aborting bargaining with seller 1 and then starting bargaining with seller 2. This option 

is analytically equivalent to exercising an option to purchase from buyer 2 at price 7(02). 

During the bargaining with the first seller, this option involves procuring the product from 

someone not involved in the current bargaining process, and it is referred to as an outside 

option in the bargaining theory literature. (By contrast, the inside option refers to an 

option to purchase from the seller currently being negotiated. See Binmore (1985), Shaked 

(1994), and Muthoo (1999) for details.) If 7i(ci) < 72(02), then the buyer will bargain 

with seller 1 to reach the negotiated price of 7i(ci); if 7i(ci) > 72(02), then either the 

first seller will propose the price of 72(02), or the buyer will immediately move to seller 2 

for bargaining. Thus, the price that the buyer pays is min{7i(ci),72(02)}- Extending the 
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analysis to n + 1 sellers (where n > 1), we can easily observe that the pricing outcome 

function of the sequential bargaining game is minj7i(cj). Note that the expression for the 

price is independent of the sequence of sellers. It is shown in a similar framework that the 

buyer is indifferent to the sequence of bargaining while the sellers prefer to bargain* earlier 

(Nagarajan and Bassok (2008) and Nagarajan and Sosic (2008)). 

Let -KB be the expected payment of the buyer by taking the expected value with respect 

to all possible realizations of (Ci , . . . , Cn, Cn + i ) , and let UB be the expected profit of the 

buyer. 

Lemma 4.3.4. In the sequential bargaining model, 

n+l 

•KB = ^ E [ E [ 7 i ( C i ) • P[7i(Q) < 7;(Ci), Vj ^ i]\Cx]}, 
•8 = 1 

LT£ = V-7TB • 

Furthermore, if Aj = A for each i, then mim{7;(cj)} = 7(minjCj), and it follows that 

7TB = (n + l)- E[7(Cn+1) • G(Cn+1)} . 

Both in the auction model and in the sequential bargaining model, the buyer procures the 

product from one of the competing sellers, but the expected payments are not identical. The 

celebrated revenue equivalence result is not applicable here since, in the bargaining model, 

the payment by the buyer to the winning seller depends on the bargaining powers of all the 

sellers. Thus, the bargaining model is not a procurement mechanism in the classical sense. 

In fact, we caution the reader that these two models should not be compared directly since 

the auction-only model assumes that the buyer does not know the sellers' costs, contrary 

to the assumption made in the sequential bargaining model. 

4.4 Analysis of the Auction-Bargaining (A-B) Model 

In this section, we analyze the auction-bargaining (A-B) model described in Section 4.2. 

We first consider the first price A-B model where the sellers have identical bargaining power 

1 — A and the buyer does not set any reserve price (Section 4.4.1). We find a symmetric 

bidding strategy equilibrium, and we derive an expression for the expected payment by the 
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buyer, which we compare to the auction-only and sequential bargaining-only counterparts. 

We also consider the model where a reserve price is set by the buyer in the auction phase 

(Section 4.4.2) and the second price A-B model (Section 4.4.3). 

4.4.1 First Price A-B Model 

The A-B model consists of two phases: the auction phase followed by the bargaining phase. 

The bids submitted by sellers during the auction phase not only are used to determine the 

winning seller (with the lowest bid) but also act as a price for the outside option which the 

buyer can exercise subsequently in the bargaining phase. Thus, when a seller submits his 

bid, he strikes a balance between increasing the probability of winning in the auction phase 

and decreasing the price of the buyer's option in the event that he becomes the winning 

bidder. In this section, we study the symmetric bidding strategy of sellers in the auction 

phase of the first price A-B model. 

We suppose that the sellers have the identical bargaining power, i.e., 1 — Aj = 1 — A 

for all i. We are interested in the symmetric bidding strategy of the first phase, which we 

denote by if>. It is straightforward to show that any reasonable bidding strategy satisfies 

ip(c) > c\ otherwise, the bidder's profit would be negative. We assume that if) is a strictly 

increasing function of the bidder's opportunity cost c. Recall that /3 and 7 represent the 

symmetric bidding strategy in the first price auction-only model and the pricing outcome 

function of the bilateral bargaining game, respectively. We assume a technical condition: 

these two functions /3 and 7 intersect finitely many times in [c,c]. 

We start with the following lemma stating the relationship of the if) function and 7 

function. The proof of this result is based on the following observation that if a bidder 

with cost c places an auction phase bid larger than 7(c), then the price outcome in the 

subsequent bargaining phase cannot exceed 7(c). Thus, by decreasing his bid price to 7(c), 

the bidder increases the probability of his winning without affecting his profit in the case 

that he wins the auction phase. The proof of Lemma 4.4.1 and all other proofs are located 

in Chapter B of this thesis. 

L e m m a 4 .4 .1 . In the first price A-B model, any strictly increasing equilibrium bidding 
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strategy ip in the auction phase satisfies, for all c € [c, c], 

if>(c) < 7(c) . 

If the bidder with ex post cost c wins the auction phase, then the price outcome of the 

subsequent bargaining phase is the minimum of his winning bid in the first phase and 7(c). 

Thus, as a corollary of the above lemma, the winning bidder receives ip(c) from the buyer. 

In Theorem 4.4.2 below, we present a symmetric equilibrium strategy ip in the auction 

phase. It turns out that this equilibrium strategy is given by a simple expression involving 

/3 and 7. However, we introduce a technical condition that is required by Theorem 4.4.2. 

Indeed, we show later that if this condition fails to be satisfied, then ip may not exist. Recall 

that 1 — A is the bargaining power of the seller and A is the slope in the definition of the 

bargaining outcome price function 7. Also, recall that g and G represent the probability 

density function and cumulative distribution function of Y ~ min{Ci , . . ' . , Cn}, respectively. 

For any given bidding strategy tp : [c, c] —» 3?+, define T^ to be a subset of [c, c] where the 

inequality in Lemma 4.4.1 is tight, i.e., T^ = {c G [c,c] \ tp(c) = 7(c)}. 

Condit ion 1. A first phase bidding strategy ip '• [c,c] —» JJ+ satisfies the following condition: 

for any interior point c ofT^, 

A > ^ - ( 7 ( c ) - c ) . (4.1) 
G{c) 

Condition 1 is a technical assumption required to prove Theorem 4.4.2, which provides a 

simple expression for the first phase equilibrium bidding strategy. A sufficient condition 

for this bidding strategy to satisfy Condition 1 will be given later in Lemma 4.4.3. In the 

uniform [0,1] distribution case, this sufficient condition is equivalent to the fact that the 

seller's bargaining power (1 — A) does not exceed l / ( n + 1). This is not unreasonable since 

there are a total of n + 2 agents in the system (n + 1 sellers and one buyer). 

Theorem 4.4.2. Let 'ip be a strictly increasing function defined on [c,c] by 

i>{c) = min{£(c), 7(c)} . 

/ / ip satisfies Condition 1, then it is a symmetric equilibrium bidding strategy in the first 

phase of the first price A-B model. Furthermore, if ip does not satisfy Condition 1, then it 

is not a symmetric bidding strategy. 
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Theorem 4.4.2 implies that a seller's bid is more aggressive in the A-B model than in 

the auction-only model. The upper bound of 7 on ^ (Lemma 4.4.1) partly explains the 

aggressiveness in the sellers' first-stage bidding strategy. Each bidder does not submit any 

bid higher than the corresponding 7 value, and furthermore he knows that the other bidders 

will be more aggressive than they were in the auction-only model. It is also interesting to 

note that as the sellers' bargaining power 1 —A decreases, 7(c) decreases and sellers bid more 

aggressively. Thus, the degree of the sellers' aggressiveness in the first phase represents the 

relative weakness in their bargaining position against the buyer. In the extreme case where 

1 — A is 0, 7(c) becomes c, i.e., each seller bids his true cost and gains zero profit. In the 

other extreme case of 1 — A = 1, it follows 7(c) = v and I/J(C) becomes /3(c), a symmetric 

equilibrium bidding strategy of the auction-only model. 

The following result provides a sufficient condition for Condition 1, which is easy to 

verify when /3'(c) is readily available. 

L e m m a 4 .4 .3 . A first-phase bidding strategy ip = min{/3(c),7(c)} satisfies Condition 1 if 

A > /3'(c) for all C<E[C,C]. 

Lemma 4.4.3 is useful when the bidding strategy /3 of the auction-only model is abso­

lutely continuous. For example, if F is a uniform distribution, then j3 is linear and one can 

easily verify whether A > /?'(c) is satisfied. (We remark that Lemma 4.4.3 also holds if the 

condition 7'(c) = A > p'(c) holds only for interior points of T^; however this condition is 

stated such that it is independent of tp.) 

The following corollary compares the expected payment of the buyer in the first price A-

B model under the symmetric equilibrium given in Theorem 4.4.2 to the expected payment 

in the auction-only model or in the sequential bargaining model. It states that the A-B 

model generates higher profit to the buyer than the auction-only or sequential bargaining 

model. This result can be explained by the fact that each seller's bid in the A-B model (see 

Theorem 4.4.2) is less than or equal to both his corresponding bid in the auction-only model 

or the price outcome in the bargaining model. For a given symmetric equilibrium bidding 

strategy ip for the auction phase, let ^ \B and n ^ s denote the expected payment and profit 

of the buyer, respectively. (Recall that the pair of ITA and HA and the pair of ITB and UB 

have been similarly defined for the auction-only model and the sequential bargaining-only 
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model, respectively. Also, recall that C„+i has a cumulative density function F.) 

Corollary 4.4.4. In the first price A-B model, suppose that tp(c) = min{/?(c),7(c)} is a 

strictly increasing symmetric equilibrium satisfying Condition 1. Then, the buyer's expected 

payment and profit are given by 

•n\B = (n + 1) • E [min{/3(Cn+1), 7 ( ^ + 1 ) } • G(Cn+1)] , 

n A B = V-^AB • 

Furthermore, n ^ B > max-fri^, 1I5}. 

The proof of Corollary 4.4.4 is straightforward and therefore omitted. To establish 

the inequality of If^g > max{11.4, l i s } , we observe from Lemmas 4.3.1 and 4.3.4 that 

TTA = (n + 1) • E [p(Cn+1) • G(Cn+1)] and TTB = (n + 1) • E [>y(Cn+1) • G(Cn+1)]. 

We recall from Section 4.3 that the ranking between the auction-only model and the 

sequential bargaining model depends on the model parameters. Corollary 4.4.4 above estab­

lishes that , for the risk-neutral buyer, the equilibrium of the A-B model given in Theorem 

4.4.2 is preferable to both the auction-only model and the sequential bargaining model. 

Thus, if this equilibrium is the unique equilibrium, then it is not necessary for the buyer to 

study model parameters when she is faced with the question of which procurement system 

would result in the largest expected profit. The A-B model results in an expected profit 

for the buyer that is higher than the expected profit of the other two models studied in 

Section 4.3. We caution the reader that this result is based on our modeling assumption 

that running an auction or a bargaining round is costless. When the cost of running a 

bargaining round is not negligible, we determine whether the first price A-B model is still 

preferable to the auction-only model by comparing this cost to the difference in expected 

profits, TV^B —11^. Similarly, when the cost of running an auction is not negligible, we com­

pare the first price A-B model to the sequential bargaining model by considering IP^B—HB-

We also note that while the first price A-B model runs only one bargaining round, the se­

quential bargaining model can possibly run multiple rounds of bargaining if the buyer does 

not discover a seller's cost until she enters bargaining with the seller. Thus, the first price 

A-B model has an advantage of identifying the most competitive seller with whom the buyer 

can bargain. (See Section 4.5 for details.) 
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While Theorem 4.4.2 shows one equilibrium bidding strategy for the A-B model, we 

now consider the possibility of other symmetric increasing bidding strategies for ip. Before 

we continue with our analysis, we revisit the symmetric equilibrium bidding strategy in the 

first price auction-only model, discussed in Section 4.3.1. For this model, /3(c) = E[V |y > c] 

is an equilibrium bidding strategy, and it is a solution to the following differential equation: 

d r ^ , 

8z 
^ , , d 0 = TTA G ^ • ̂  - c)] = ~ 9(c){P(c) - c) + G(c)-J(c) . 

dcr 

Solving this differential equation, we obtain a family of non-intersecting solutions charac­

terized by the constant of integration K € (—00, 00): 

PK{c) = E[Y\Y > c] + = £ - . 
G(c) 

If K = 0, then J3K corresponds to ft given above in Lemma 4.3.1. If K > 0, then it can 

be shown that (3K forms a symmetric equilibrium for the first price auction-only model, 

but it has the undesirable property that it approaches 00 as c approaches c from the left. 

If K < 0, then /?# is not monotone in [c,c\; however, it is used to define the first price 

bidding strategy when a buyer specifies a reserve price. (When the reserve price is r € [c,c], 

then the equilibrium bidding strategy is given by /3 r = @K, where / ^ ( r ) = r.) The above 

definition of 0K proves to be convenient in denning bidding strategies for the first price A-B 

model. 

Theorem 4.4.5. In the first price A-B model, suppose that a continuous and increasing 

function ip satisfies Condition 1. Then, ip is an equilibrium bidding strategy for the auction 

phase of the first price A-B model if and only if 

(i) ip(c) < 7(c) for c £ \c,c], and 

(ii) there exists {ao, a\,..., am} satisfying c = OQ < a\ < 02 < • • • < am — c such that for 

each interval Ii = [aj_i, at] where i = 1 , . . . , m, either 

tp(c) — fiKi{c) for some Ki € (—00, 00), or ip(c) = 7(c) . 

Furthermore, ip(c) = c. 



www.manaraa.com

CHAPTER 4. A SEQUENTIAL AUCTION-BARGAINING MODEL IN 
PROCUREMENT 102 

Since the family of curves {/3K | K G (—00, 00)} parameterized by K are non-intersecting 

and ip is continuous, we can assume without loss of generality that the sequence of intervals 

i i ' s alternatively satisfies ip(c) = pKi{c) or ip(c) = 7(c). Thus, Theorem 4.4.5 shows that 

an equilibrium bidding strategy tp in the first price A-B model consists of alternating 7 and 

PKi functions, provided that Condition 1 is satisfied whenever ip coincides with 7. This 

result is useful in constructing ip. The next result states that Condition 1 must be satisfied 

for every symmetric equilibrium bidding strategy. 

Lemma 4.4.6. If a continuous increasing function ip does not satisfy Condition 1, then tp 

is not a symmetric equilibrium bidding strategy in the first phase of the A-B model. 

We now remark on statement (ii) in Theorem 4.4.5, focusing on the right-most interval 

Im = [am-i,am}. For c G Im, either ip(c) = /3Km{c) or ip(c) = 7(c). In the former 

case, we must have Km = 0. (Otherwise, strictly positive Km implies lim^c &Km (c) —> 

00, contradicting the definition of ip in Theorem 4.4.2, and strictly negative Km implies 

decreasing /3#m, contradicting the monotonicity of ip.) In the latter case, we have ip{c) = 

7(c), which is possible only if ip{c) = 7(c) = /3o(c) = c. Thus, we obtain tp(c) < c, which 

states that the first-phase bid would not be higher than the highest possible cost, which is 

a reasonable outcome. 

The following result is useful in constructing another symmetric equilibrium bidding 

strategy from a given equilibrium. In the first proof of Corollary 4.4.7, we replace a sequence 

of a symmetric bidding strategy ip with 7; in the second part, we replace it with /3K for 

some K. The proof of Corollary 4.4.7 follows from Theorem 4.4.5 and Lemma 4.4.6 and is 

omitted. 

Corollary 4.4.7. Let tp be an equilibrium symmetric bidding strategy for the auction phase 

of the first price A-B model. Let s and t satisfy c<s<t<c, and let ip° be an increasing 

function such that ip°(c) — ip(c) for c £ (s,t). 

(a) Suppose both ip(s) = 7(s) and tp(t) = 7(f) hold, and inequality (4.1) holds for c G 

(s,t). If ip°(c) — 7(c) for c G (s,t), then ip° is an equilibrium bidding strategy with 
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(b) Suppose both ip(s) = PK{S) and tp(t) = /?#•(£) hold for some K, and ip(c) < PK(C) 

holds for c € (s,t). If tp°(c) = 8K(C) for c € (s,£), i/ien ip° is an equilibrium bidding 

strategy with n ^ B < I I ^ B . 

Corollary 4.4.7 shows that there exists a partially ordered ranking among symmetric 

equilibria with respect to the expected profit of the buyer. Corollary 4.4.8 below shows that 

there is a biggest and smallest element in this partially ordered set, through yet another 

method of constructing an equilibrium. 

Corollary 4.4.8. Let if)1 andip2 be equilibrium symmetric bidding strategies for the auction 

phase of the first price A-B model. Then, both ipm(c) = min{^/)1(c), 1/^(0)} and tpM(c) = 

max{'i/j1(c),'!/>2(c)} are also equilibrium symmetric bidding strategies. Furthermore, 

i^M < minjrr^rr^} < max 

The proof of Corollary 4.4.8 is straightforward and therefore omitted. 

Notice that Theorem 4.4.5 implies the possibility of multiple equilibrium bidding strate­

gies, each characterized by a collection of intervals and Ki values. The profit-comparison 

result of Corollary 4.4.4 (i.e., n ^ B > max-jri^, n ^ } ) corresponds to a particular equilib­

rium (given by tp(c) = min{/3(c), 7(c)}), and this result may not hold with other equilibrium 

bidding strategies. The following theorem shows that the above comparison of profits holds 

for any symmetric equilibrium bidding strategy. 

T h e o r e m 4.4.9. For any increasing and continuous symmetric equilibrium bidding strategy 

ip in the A-B model that satisfies Condition 1, we have f l^g > max{n^ , n # } . 

E X A M P L E : UNIFORM [0,1] C O S T IN THE F I R S T P R I C E A-B M O D E L . 

We consider an example of uniform opportunity costs, where each C{ has a uniform 

distribution on [0,1], with v > 1. In this uniform [0,1] cost case, it turns out that Condition 

1 is satisfied if and only if A > n / ( n + 1 ) , and in this case, we obtain the following uniqueness 

result. 

T h e o r e m 4.4.10. In the first price A-B model, suppose that sellers' opportunity costs have 

uniform [0,1] distribution and X > n / ( n + l ) . Then, there exists a unique continuous strictly 
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increasing symmetric equilibrium bidding strategy for the auction phase, given by 

ip(c) = min{A)(c) ,70)} • 

The proof of Theorem 4.4.10 is based on the observation that whenever 7(c) < /3o(c), 

any (3K intersecting with 7 at c has the property (3'K(c) < A = 7'(c). 

We now describe in detail the symmetric equilibrium bidding strategy given in Theorem 

4.4.10. We compute the buyer's expected profit in the A-B model and compare it to the 

auction-only model and the sequential bargaining model. Since each seller's cost is uniformly 

distributed, we obtain G(c) = (1 — c) n . Thus, the auction phase bidding strategy is given 

by ip(c) = min{/3o(c), 7(c)}, where. 

1 n 
A)(c) = H • c and 7(c) = (1 - A) • v + A • c. 

n + 1 n + 1 

Since both /3o and 7 are linear functions, they intersect at most once depending on the 

buyer's value v and the sellers' bargaining power 1 — A. Let s = inf{c € [0,1] | /3(c) < 7(c)}. 

(Since n/(n + 1) and A correspond to the slopes of /3o and 7, s represents the intersection 

of these two lines if s € (0,1).) Thus, 

, , , . raf , , , , / 7 ( c ) , i f c € [ 0 , s ) o r c = s € ( 0 , l ] 
•0(c) = mm{/3(c),7(c)} = < 

[ /3(c) , if c e (s , l ] or c = se [0,1). 

Also, from Lemma 4.4.3 and A > n/(n + 1) = /3'(c), it is easy to verify that ip satisfies 

Condition 1. 

We comment on the assumption A > n / ( n + 1). It is reasonable to expect that if there 

is only one potential seller, the bargaining powers of the seller and the buyer are similar, 

i.e., A « 1/2. The seller's bargaining power typically decreases as the number of sellers 

increases. When there are n + 1 potential sellers, there are a total of n + 2 players in the 

market (including the buyer), and it is reasonable to expect that each seller's bargaining 

power satisfies 1 — A = l / ( n + 2). In this case, A = (n + l ) / ( n + 2) > n/(n + 1) = /?'(c). 

Furthermore, if A > n/(n + 1) does not hold, then by Lemma 4.4.6 there exists no strictly 

increasing equilibrium bidding strategy in the A-B model with the exception of ip{c) = /3(c). 

With the Uniform [0,1] cost distribution, the unique equilibrium bidding strategy in 

the A-B model is given by Theorem 4.4.10 of Section 4.4.1. Here, we give a closed-form 
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expression for the buyer's expected profit in the A-B model and compare it to the other 

models. 

Recall that the buyer's expected profits in the auction-only model and in the sequential 

bargaining-only model are given by the following expressions. These results are straightfor­

ward to verify. 

UA = u - ( n + l ) E [ G ( c ) / 3 ( c ) ] 

= v - (n + 1) / P(c)G(c)f(c)de = v - -^— , 
Jo n-\-1 

UB " = u - " ( n + l )E[G(c )7 (c ) ] 

= v - (n + 1) f rtc)G(c)f(c)dc = Xv- - ± - . 
Jo n + z 

Note that the ranking between IT^ and II5 depends on the values of A and v. 

We now compute the expected profit HAB of the buyer in the A-B model. Suppose that 

the two linear functions /3 and 7 intersect in [0,1]. The intersection point is given by 

l - ( n + l ) ( l - A ) t t 

~ (n + l ) A - n 

An algebraic manipulation shows that 

HAS = v-(n+l)E[if>{c)G(c)] 

= v-{n+l) (JS -y(c)G(c)f(c)dc + J p{c)G(c)f(c)dt 

2 1 — (1 — s ) n + 1 

= v-—— + [l-(n + l)(l-\)v] n+2 n+1 
~s(l-s)n+1 l - ( l - s ) n + 2 

+ [ ( n + l ) A - n ] (4.2) 
n + 1 ( n + l ) ( n + 2)J 

Figure 4.1 shows the symmetric equilibrium bidding strategy of the A-B model in com­

parison to the symmetric equilibrium bidding strategy of the auction-only model as well 

as the pricing outcome function of the bargaining model. The expected profit Tl^B of the 

buyer in the A-B model can be computed in a closed form. (See equation (4.2).) Figure 

4.2 shows that the expected profit of the buyer in the first price A-B model is higher than 

in the auction-only model or the sequential bargaining-only model. In addition, while it 

can be shown that the buyer's expected profit in the auction-only model or the sequential 
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(a) A = 0.75, and n = 2 (i.e., 3 sellers). (b) A = 0.85, and n = 3 (i.e., 4 sellers). 

Figure 4.1: The symmetric equilibrium bidding strategy of the A-B model (A-B) compared 

to the bidding strategy of the auction-only (A-only) model and the pricing outcome function 

of the sequential bargaining model (B-only). v = 1.2. 

bargaining model can be shown to be concave with respect to the number of the sellers, it 

may fail to be concave in the A-B model. 

It is interesting to observe from Figure 4.2 that it is not always more profitable for the 

buyer to add one more seller to the auction-only model than to have the second-phase of 

bargaining as in the A-B model. Consider, for example, the case where the number of sellers 

is 2 in Figure 4.2(b). This is in contrast to the conclusion of Bulow and Klemperer (1996), 

in which the benefit of the second-phase ultimatum bargaining is always outweighed by the 

benefit of having an extra bidder. Our observation is consistent with a similar finding of 

Wang (2000) for his auction-bargaining model, where he assumes a one-sided uncertainty 

of the private buyer's valuation in the bargaining phase. Whereas Bulow and Klemperer 

(1996) do not consider the presence of an audit, both Wang (2000) and this chapter allow 

an audit prior to the bargaining phase, thereby equipping the buyer with more information 

to benefit from the auction phase. Thus, in these two papers, it is quite plausible that 

bargaining may become preferable to attracting one more bidder. 
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Number ot sellers Number of sellers 

(a) A = (n + l) /(n + 2) under 2,3,4 sellers. (b) A = 0.85 under 2 , . . . , 8 sellers. 

Figure 4.2: The expected profit of the buyer in the A-B model (A-B) compared to the 

auction-only model (A-only) and the sequential bargaining model (B-only), as a function 

of the total number of sellers, n + 1. v = 1.2. 

4.4.2 A-B Model with a Reserve Price 

While we have assumed in Section 4.4.1 that the buyer does not set any reserve price, we 

now consider the case where the buyer announces a reserve price, over which she commits 

not to purchase the product from any of the sellers. This announcement is made before the 

bids are submitted in the first phase. By setting a reserve price, the buyer faces the risk of 

not being able to procure, but she may increase her expected profit by encouraging sellers 

to bid more aggressively. 

We use r to denote the reserve price set by the buyer. Since the buyer does not want 

to procure the product above its value v, we proceed by assuming r < v. Recall that 

j3r represents the symmetric bidding strategy in the first price auction-only model with a 

reserve price r. Also recall that 7 denotes the pricing outcome function of the bilateral 

bargaining game. We assume that these two functions {3r and 7 intersect finitely many 

times in [c,r\. Similar to the first price A-B model without a reserve price, we introduce a 

technical condition that is required by Theorem 4.4.11 below. Recall that from the definition 

ofr, r^r = {c\ ^r(c) = 7(c)}. 

C o n d i t i o n 2. A bidding strategy tpr satisfies the following condition: for any c satisfying 
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c<c<r in the interior point ofT^, 

A > |£l(7(c)-c) . 

Note that Condition 2 is identical to Condition 1 except that the above inequality is 

required for c € (c,r) only. The following theorem summarizes the main results for the first 

price A-B model with a reserve price. 

Theorem 4 .4 .11 . Let vpr be a strictly increasing function defined on [c,r] by 

r(c) = min{/r(c) ,7(c)}. 

If ipr satisfies Condition 2, then it is a symmetric equilibrium bidding strategy in the first 

phase of the first price A-B model with a reserve price r. 

The proof of Theorem 4.4.11 is similar to the proof of Theorem 4.4.2 and is omitted. We 

observe from Theorem 4.4.11 that a seller's bid in the first phase of the A-B model is more 

aggressive than in the auction-only model with the same reserve price. This observation is 

analogous to the case without any reserve prices (Section 4.4.1). Furthermore, note that 

the seller's bid ipr(c) becomes more aggressive as r decreases, just as in the auction-only 

model. We remark that Condition 2 is required to guarantee that ipr forms an equilibrium. 

The following corollary shows the expected profit of the buyer in the first price A-B 

model with a reserve price. The result is immediate, and thus we omit the proof of the 

corollary. 

Corollary 4.4.12. Under the conditions of Theorem 4-4-H> the buyer's expected payment 

and profit are given by 

irr
AB = (n+1) - E[G(Cn+i) V{Cn+1) • I{Cn+l < r}] , 

WAB = [l-(i-F(r)r+l]v-nAB. 

From Lemma 4.3.2 and Corollary 4.4.12, it is clear that, for the risk-neutral buyer, the 

A-B model with a reserve price is preferable to the auction-only model with the same reserve 

price. We now consider the optimal reserve price which maximizes the buyer's expected 

profit. Let r*AB denote the optimal reserve price of the buyer in the first price A-B model. 
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The first order condition for the optimal reserve price in the first price A-B model is derived 

in the following lemma. 

L e m m a 4.4.13. Under the condition of Corollary 4.^.12, the optimal reserve price r = r*AB 

satisfies the following equation: 

rci{P
r{c)<i{C)}-f{c)dc 

v-r = -= — . 
f(r) 

Note that the integral part of the above equation, J J I{(3r(c) < 7(c)} -/(c) dc, represents 

the probability that a seller's ex post cost c satisfies both /3r(c) < 7(c) and c < r. Lemma 

4.4.13 states that the optimal reserve price in the auction-only model, rA, is not necessarily 

the optimal reserve price in the A-B model. In fact, if F(r)/f(r) is weakly increasing, then 

the unique optimal reserve price rA given in Lemma 4.3.2 can be shown to be a lower bound 

for rAB. We obtain this result by comparing the equation in Lemma 4.3.2 to the equation 

in Lemma 4.4.13. In other words, in the A-B model, the buyer sets a less-aggressive reserve 

price than in the auction-only model. We attribute this observation to the fact that the 

seller's bid is less important in the A-B model, because the buyer learns the seller's cost 

before the second-phase bargaining process. 

While Theorem 4.4.11 shows one equilibrium bidding strategy for the A-B model with 

a reserve price, we now consider the possibility of other symmetric bidding strategies for 

ipr as in the previous section. The following theorem is analogous to Theorem 4.4.5 and 

Lemma 4.4.6, and we omit this proof. 

Theorem 4.4.14. In the first price A-B model with a reserve price, suppose that a con­

tinuous increasing function t]jr satisfies Condition 2. Then, ipr is a symmetric equilibrium 

bidding strategy for the first phase if and only if 

(i) ipr(r) = r 

(ii) ipr(c) < 7(c) for c G [c, r] 

(Hi) There exists {ao, a\,..., am} and Ki G (—00, 00) for each Ki such that c = a$ < a\ < 

a% < • • • < am = r and for each Ii € [aj-i, at], either 

ipr(c) = j3Ki(c) for some Ki G (—00,00), or 4>r{c) = 7(c) . 
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Furthermore, ipr(c) = min{/? r(c),7(c)} for c G Im-

Also, if a continuous increasing function i]jr does not satisfy Condition 2, then ipr is not a 

symmetric equilibrium bidding strategy in the first phase of the A-B model with a reserve 

price r. 

E X A M P L E : U N I F O R M [0,1] C O S T IN THE A-B M O D E L WITH A R E S E R V E P R I C E . 

We return to the example of the uniform [0,1] opportunity cost. As before, we assume 

A > n / ( n + l ) . We also suppose 7(0) < /3r(0); otherwise, it can be shown that ipr(c) — (3r(c), 

implying that the A-B model becomes the same as the auction-only model. The following 

lemma establishes that tpr given in Theorem 4.4.11, ifir(c) = min{/3 r(c),7(c)}, satisfies 

Condition 2, and is a unique first-phase bidding strategy for the first price A-B model with 

a reserve price r . 

L e m m a 4.4.15. In the first price A-B model with a reserve price, suppose that the sellers' 

opportunity costs are drawn from uniform [0,1] distribution. Let r G [0,1] be the reserve 

price, and suppose that both 7(0) < /3r(0) and A > n/{n + 1) hold. Then, the symmetric 

equilibrium bidding strategy ipr(c) for the first phase is unique, given by 

V(c) = mm{pr(c), 7(c)} . 

The proof of Lemma 4.4.15 is similar to Theorem 4.4.10 and is based on the observation 

that whenever 7(c) < /3r(c), any J3K intersecting with 7 at c has the property f3'K{c) < A = 

7 ' (c ) , 

In the uniform [0,1] cost case, it follows from Lemma 4.3.2 that 

nc+1 (1-r)"*1 

P { ' ra + 1 ( n + l ) ( l - c ) " ' 

and pr is concave with respect to c in [0, r]. Since 7(0) < /3r(0) and 7(7*) > r = /3 r(r), there 

exists a unique intersection of (3r and 7 in [0, r]. Let sr G [0,r] such that /3 r(s r) = 7 (s r ) . 

Figure 4.3 shows the optimal bidding strategy in the auction-only model with a reserve 

price r G {0.5,0.8} and the pricing outcome function of bargaining. We observe that the 

intersection of these two functions is unique for each value of r. From Lemma 4.4.15, ipr(c) 

is given by the minimum of these two functions. 
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Figure 4.3: The bidding strategy of a seller in the auction-only model with a reserve price 

(/3r) and the pricing outcome function (B-only 7) with A = 0.85, v = 1.2, and n = 3, i.e., 4 

sellers. 

From Corollary 4.4.12, it is straightforward to verify that the expected payment from 

the buyer, 7r^B, and the expected profit of the buyer, n ^ B , are 

**AB = (n + 1) ( _ £ ( ! - c)n • min {/3r(c), 7 (c)} dc) , 

lf;B = {l-{l-r)^)v-^AB. 

From the first order condition and Lemma 4.4.13, the optimal reserve price r ^ g maximizing 

the expected profit of the buyer satisfies 

v — r r — s 

where sr is the unique intersection between (V and 7 in [0,r]. Since v — r is nonnegative, 

it follows that r > sr. Thus, 
V + SYAB 

rAB — 

In the auction-only model, the optimal reserve price for the uniform [0,1] example is given 

by r*A = v/2 (Lemma 4.3.2), and it follows that r*AB > rA from the above equation. Thus, 

the optimal reserve price in the A-B model is less aggressive than in the auction-only model. 

This observation is consistent with the remark following Lemma 4.4.13. 

Figure 4.4 is a numerical example of the expected profit of the buyer in the A-B model 

as a function of the reserve price. Clearly, the buyer's maximum expected profit in the first 
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price A-B model with a reserve price is higher than in the auction-only model with the 

same reserve price. For the auction-only model, the optimal reserve price is given by rA — 

v/2 — 0.6; for the A-B model, the optimal reserve price is given by rAB = (v + s ) /2 « 0.95, 

where s is numerically calculated to be approximately 0.7 in this case. Thus, we observe 

that r*AB is bigger than rA. We also observe that for low values of r, the expected profit to 

the buyer is the same in both models. This occurs since a sufficiently small reserve price r 

violates the condition 7(0) < /3r(0), implying that both i\f and f3r functions coincide; thus, 

the A-B model essentially becomes the auction-only model. 

0 .9 -
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Figure 4.4: The expected profit of the buyer in the auction-only model (A-only) and the 

first price A-B model (A-B), both with a reserve price r, A = 0.85, v = 1.2, and n = 3 (i.e., 

4 sellers). 

4.4.3 Second Price A-B Model 

In the second price A-B model, the seller with the lowest bid in the first phase (auction 

phase) is selected for the second phase of bargaining, just as in the first price A-B model. 

However, the price at which the buyer can purchase the product from the winning bidder 

is not his bid (the lowest bid), but the second lowest bid. The second price A-B model 

can easily be implemented if the auction phase is conducted as an open descending-price 

auction. In this section, we investigate an equilibrium bidding strategy for the first phase 
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in the second price A-B model. We also compare the expected profit of the buyer in the 

first and second price A-B models, and we study whether a preference ranking between the 

first and second price A-B models can be established. 

In this section, let ip(c) be a symmetric equilibrium bidding strategy of the second price 

A-B model. A symmetric equilibrium bidding strategy in the second price A-B model is 

given in Theorem 4.4.16. 

Theorem 4.4.16. In the second price A-B model, a dominant bidding strategy for each 

bidder in the first phase is. 

ip(c) = c . 

The proof of Theorem 4.4.16 is similar to the case of the second price auction-only model 

and is based on the observation that the amount of payment a bidder expects to receive 

conditioned on his winning does not depend on his first phase bid. Note that the above 

strategy is the same as the second price auction-only model and does not depend on the 

number of competing sellers in the system. 

The celebrated Revenue Equivalence Theorem implies that the expected profit of the 

buyer in the first price auction-only model is the same as the corresponding quantity in the 

second price auction-only model. This theorem is not applicable in the A-B model which 

is not a mechanism. Now, we compare the expected profits of the buyer, and it turns out 

that they are generally not identical. 

Theorem 4.4.17. The expected profit of the buyer in the second price A-B model is at least 

that of the first price A-B model with i/>(c) = min{/3(c),7(c)}. 

The proof of Theorem 4.4.17 is based on comparing the ex post expected payment 

received by each seller in both of the two models. Let us first review an analogous result 

in the auction-only model. It is well known that while the mean of the final price is the 

same in both the first price auction-only model and the second price auction-only model, 

the distribution of the final price in the latter model is a mean-preserving spread of the 

final price in the former model (e.g. Krishna (2002)). In the A-B model, a similar analysis 

shows that the ex post final price in the second price A-B model is a "spread" of the ex post 

final price in the first-price A-B model; however, the minimum operator in the definition 
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of ip introduces concavity in taking the expectation over the "spread". Then, by Jensen's 

Inequality, the expected final price is lower in the second price A-B model, as stated in 

Theorem 4.4.17. 

E X A M P L E : UNIFORM [0,1] C O S T IN T H E S E C O N D P R I C E A-B M O D E L . 

In the second price A-B model, if the opportunity cost is drawn from uniform [0,1] 

distribution, the expected profit of the buyer, denoted by I I 2 ^ , is 

n+l 
IT2 

v"- ^ E J E ' [ G(c) •E[min{y,7(c)} |y > c]\d = c 

[1 - (1 - X)v]n+2 - [(1 - A - (1 - X)v)n+2 

= v — + n +2 ' (n + 2)A 

where the last equality results from algebraic manipulation. It can be shown from Lemma 

4.3.1 that ITA = v — 2/(n + 2). Since the last term above is nonnegative, it follows that 

U2
AB > II4. 

Figure 4.5 shows the expected profit of the buyer in the auction-only, first price A-B, 

and second price A-B models. We observe that the buyer's expected profit is the highest in 

the second price A-B model. 

Number o1 sellers 

(a) A = 0.75 

Number ol sellers 

(b) A = 0.85 

Figure 4.5: The expected profit of the buyer as a function of the number of sellers in the 

auction-only (A-only), first price A-B (1st A-B), and second price A-B (2nd A-B) models. 

v = l'.2. 
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4.5 Extensions and Fur ther Discussions 

In this section, we consider extensions of the models discussed in Sections 4.3 and 4.4. In 

Section 4.5.1, we first revisit the auction-bargaining model of Section 4.4. While only one 

seller was selected in the auction phase for bargaining in the second phase, in Section 4.5.1, 

we consider the case where the buyer can select more than one seller from the first phase. 

In Section 4.5.2, we discuss the impact of positive fixed costs for conducting an auction or 

bargaining. In Section 4.5.3, we consider the sequential bargaining model of Section 4.3.2 

by assuming that the buyer discovers the sellers' costs one at a time and is not allowed to 

resume bargaining with a seller that she had previously aborted. 

4 .5 .1 M u l t i p l e Se l l ers in t h e B a r g a i n i n g P h a s e of t h e A - B M o d e l 

In the A-B models studied in Section 4.4, the buyer selects only one seller in the auction 

phase and enters the second phase bargaining with this seller. In this section, suppose 

that the buyer selects multiple sellers in the first phase and conducts sequential bilateral 

bargaining with these sellers. At the end of the first phase, the buyer observes all the 

bids bi submitted by sellers i, and selects the bidders with the m lowest bids, where m €E 

{2, 3 , . . . , n + 1}. (For notational convenience, suppose that bidders i — 1 through m are 

selected for the second phase.) For the second phase bargaining process, the buyer decides 

the order in which she will sequentially bargain with .the m sellers. At the beginning of the 

second phase, the buyer knows the opportunity costs Q for all sellers i — 1 , . . . ,m. (The 

second phase bargaining with m sellers follows the sequential bargaining model described 

in Section 4.3.2.) We refer to this model as Model M. 

We find an equilibrium bidding strategy of sellers in the first phase and the bargaining 

strategy of the buyer in the second phase. Consider the buyer's problem. By an argument 

similar to the proof of Lemma 4.3.4, the buyer's payment is independent of the bargaining 

order and is given by min{min{6j,7(cj)} | i = 1 , . . . , m} . Thus, one of the buyer's weakly 

dominant strategies is to bargain first with the seller with the least min{6j,7(cj)} (with the 

least bid) until an agreement is reached. For the sellers' problem, the first-phase bidding 

strategy can be shown to remain unchanged from Theorem 4.4.2 of Section 4.4. 
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Theorem 4.5 .1 . Let tp be a strictly increasing function defined on [c,c] by 

ip(c) = min{/3(c), 7(c)} . 

If tp satisfies Condition 1, an equilibrium bidding strategy in Model M is as follows: (i) in 

the first phase, seller i submits bid ip(ci), (ii) in the second phase, the buyer bargains with 

the seller with the least min{6j,7(cj)} and reaches an agreement with him. 

We consider a variation of Model M. During the second phase, the seller does not know 

the ex post cost Gj of seller-i until she enters a-round of bilateral bargaining with the seller. 

Thus, the buyer cannot use {CJ | i = 1 , . . . , m} in deciding the order of bargaining. This is 

similar to the sequential bargaining model of Section 4.5.3. For this model, we can establish 

a result similar to Theorem 4.5.1, except that the buyer's strategy is to bargain with the 

seller with the least 6, until an agreement is reached. 

4.5.2 Fixed Costs of Auctions and Bargaining 

In our discussion in Section 4.4, we have assumed that the cost of conducting bilateral 

bargaining or an auction is negligible. Such an assumption is valid, for example, when 

there is a good infrastructure for conducting auctions or bargaining transactions or when 

the buyer's relationships with the sellers have been well maintained such that the auction 

or bargaining outcomes can be reached without much effort. 

In this section, we consider the case where there are positive fixed costs for auction 

and bargaining, denoted by KA and KB, respectively. Then, in the auction-only model, 

the buyer incurs the cost of KA , and in the sequential bargaining model, the buyer incurs 

the cost of at least one KB (see the discussion in Section 4.5.3). In the A-B model, the 

buyer incurs the fixed costs associated with the auction and one round of bargaining, i.e., 

KA + KB- By comparing these fixed costs with the expected profits of the buyer in each 

of these models, the buyer can select the procurement system that maximizes her expected 

profit. 
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4 . 5 . 3 S e q u e n t i a l B a r g a i n i n g a n d O p t i m a l S t o p p i n g 

We consider the sequential bargaining model where the buyer enters a series of bilateral 

bargaining with each of n + 1 potential sellers in an exogenously determined order. Without 

loss of generality, we assume that this order is given by i• = 1 ,2 , . . . , n + 1. In Section 4.3.2, 

we have assumed that the buyer knows the ex post cost Q of each seller i, and it has been 

shown that the buyer's optimal choice is to purchase from the most efficient seller by paying 

7(minjCj). In this section, we assume that the buyer does not know the realized cost c; 

.of seller i until she starts, a bargaining process with this.seller. Furthermore, the buyer 

cannot resume bargaining with a seller once she starts bargaining with another seller, i.e., 

the buyer cannot go back to a previous seller. 

We note that this model is an alternative to the A-B model discussed in Sections 4.3 and 

4.4. In both models, the buyer does not know a seller's cost, unless she initiates bargaining 

with that seller. In the A-B model, the buyer uses an auction to select one seller with 

whom she bargains; in the sequential bargaining model discussed here, the buyer does not 

use any auction, but uses a series of bargaining rounds. In this subsection, we outline a 

basic analysis for the sequential bargaining model. 

We assume that a seller's opportunity cost is independently drawn from a common 

distribution F. In this case, we show that the buyer's profit-maximizing decision strategy 

of whether to accept a bargaining outcome with each seller is an optimal stopping problem. 

The following lemma for the optimal stopping criterion follows from Ferguson (2000). 

L e m m a 4.5.2. In the sequential bargaining model without the buyer's a priori knowledge 

of Ci 's, the optimal stopping criterion for the buyer is to accept the bargaining outcome with 

the j 'th seller if Cj < Aj where 

I 00, j = n + 1 
Ai = S 

[ E [ m i n { C i + i , ^ j + i } ] , j € {n,n - 1 , . . . , 1}. 

Furthermore, ifCi is uniformly distributed on [0,1], then An = 1/2 and Aj = Aj+\ — A'j+1/2 

forj = n-l,...,l. 

Given the above decision rule of the buyer, seller j will choose to sell to the buyer at 

the price of I(CJ) if Cj < Aj. If Aj < Cj < i(Aj), then he will sell and receive l{Aj) instead 
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since it is still profitable to do so. Otherwise, he will not reach an agreement with the buyer 

and the buyer will start bargaining with seller j + 1. 

We can easily extend the above analysis to the case where the buyer incurs a fixed 

cost KB for each round of bargaining. This cost is incurred, for example, when the buyer 

researches a seller's ex post cost at the beginning of bargaining with the seller. Then, it can 

be shown that the optimal stopping criterion of Lemma 4.5.2 remains valid except for the 

following modification: for j e {n, n — 1 , . . . , 1}, 

Ay =.-E[mm{Cj+1,AJ+i~KB./\}].-

(Note that 1 — A is the bargaining power of the seller.) 

In the special case where the buyer knows that the first seller is the most efficient seller, 

i.e., c\ = minj Cj, then it is optimal for the buyer to reach an agreement with the first seller. 

In this case, the buyer pays 7(ci) = mini 7(0$). 

4.6 Conclusion 

In this chapter, we have examined a combined auction-bargaining model in a procurement 

setting, where the buyer procures an indivisible item from one of many competing sellers. 

The model consists of two phases: in the auction phase, the buyer selects the seller, and in 

the bargaining phase, the final price is determined. The winning bid in the auction phase 

serves as an outside option for the buyer in the bargaining phase. As a result, each seller's 

bidding strategy in the auction phase strikes a balance between increasing his probability 

of winning and increasing the final price in the case that he wins. In this chapter, we take 

the perspective of the expected profit maximizing buyer, and we allow the buyer to set a 

reserve price in the first phase. 

For our model, we find a symmetric first-phase bidding strategy for the sellers which is 

simple and intuitive to understand. We show that the combined auction-bargaining model 

produces a higher expected profit to the buyer than the standard auction or sequential 

bargaining models. The buyer's expected profit can be improved by setting an appropriate 

reserve price in the auction phase, and in many cases, the optimal reserve price can easily 

be computed from the first order condition. We also show that the buyer prefers conducting 
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the auction phase using a second price rather than a first price auction. Our results are 

illustrated using an example with uniformly distributed costs. 

We believe that there are several interesting extensions that can be addressed in the 

framework of the auction-bargaining model proposed above. For example, when the sellers 

are asymmetric, both in terms of the distribution of cost and the bargaining power, it would 

be interesting to investigate what kind of sellers would benefit from the auction-bargaining 

model as opposed to the standard auction-only or bargaining models. 
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Chapter 5 

Impact of Transfer Pricing 

Methods for Tax Purposes on 

Operational Decisions of a 

Multinational Firm 

5.1 Introduction 

Transfer pricing refers to the pricing of an intra-firm transaction of an intermediate product 

or service between two divisions1 of a firm (Feinschreiber, 2004). Because it has a significant 

impact on how the division performances are evaluated, the choice of the transfer pricing 

method influences the decisions of the divisions, and consequently affects the magnitude of 

the well-known "double marginalization" effect (Spengler, 1950). The loss of optimality due 

to double marginalization may in theory be mitigated by carefully designing an appropriate 

payment scheme between the divisions within the firm, and as a result, incentive alignment 

and supply chain coordination have been a subject of interest in both the management 

accounting and the supply chain coordination literatures. 

In practice, for a multinational firm, transfer pricing is closely related not only to perfor-

*Or affiliates, subsidiaries, or departments. 
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mance evaluations but also to tax reporting. If the firm is subject to several tax jurisdictions, 

it is profitable for the firm to shift the majority, if not all, of its profits to the jurisdiction 

with the lowest tax rate. To prevent this abuse, tax authorities use a set of pre-specified 

transfer pricing methods that are intended to ensure reasonable price allocation among the 

divisions (e.g. Section 482 of Internal Revenue Service (IRS) Tax Code). Such regulations 

provide some flexibility to the firm's tax reporting practice, and the particular choice of the 

transfer pricing method can have a significant impact on the before and after-tax profits of 

the divisions and of the entire firm (Horst, 1971; Copithorne, 1971). 

The set of transfer pricing methods approved by tax authorities typically does not 

eliminate the double marginalization effect, and as a result, the maximum firm-wide after­

tax profit may not be achieved (See, e.g. Halperin and Srinidhi (1987)). To induce the 

best firm-wide decisions from its divisions, one possible solution for the firm is to maintain 

two separate accounting systems - one for performance evaluation and the other for tax 

reporting. Such practice, however, is not always used; in fact, it has been reported that 

over 80 percent of multinational firms based in the U.S. choose the same accounting system 

for both performance evaluation and tax reporting (Czechowicz et al., 1982; Nielsen et al., 

2008). This phenomenon occurs not only because of the cost and effort associated with 

maintaining two accounting systems, but also due to the possible tax disputes with the 

regulatory authorities (Halperin and Srinidhi, 1991; Granfield, 1995; Baldenius et al., 2004). 

Tax disputes are not uncommon as an Ernst k. Young survey reports that five out of six 

companies have experienced transfer pricing issues with tax authorities, 49 percent of which 

are on-going (Johnston, 1995). Based on this, we examine the case where a common transfer 

pricing method serves both performance evaluation and tax reporting purposes. 

In this chapter, we study operational decisions of a multinational firm with special 

attention to transfer pricing methods. We are motivated by the continuing globalization 

of the world economy where production and consumption increasingly occur in different 

countries; in fact, one-third of the total exports from the U.S. are attributed to multinational 

firms (Bernard et al., 2006). We develop a stylized model of a multinational firm consisting 

of the manufacturing division and the retail division, where the retail division faces price-

sensitive stochastic demand and orders an intermediate product from the manufacturing 



www.manaraa.com

CHAPTER 5. IMPACT OF TRANSFER PRICING METHODS FOR TAX PURPOSES 
ON OPERATIONAL DECISIONS OF A MULTINATIONAL FIRM 122 

division. We allow the retailer to set the price of the final product, which is a common 

practice in many industries where the retailer's power has increased (Ailawadi et a l , 1999). 

The manufacturer either accepts or rejects the order. The objective of each division is to 

maximize its expected profit. We also consider the central planner's problem of maximizing 

the expected firm-wide after-tax profit as a benchmark. Our modeling of the firm's supply 

chain is similar to price-setting newsvendor models used in the supply chain management 

literature, such as Lariviere and Porteus (2001) and Song et al. (2008). The transfer pricing 

methods that we consider are the cost-plus method and the resale-price method, which are 

the most commonly-used non-market pricing methods for multinational firms in the U.S. 

(Benvignati, 1985; Halperin and Srinidhi, 1987), which we describe in Section 5.1.1 below. 

5.1.1 The U.S. Tax Regulations for Transfer Pricing 

The U.S. transfer pricing methods for tax purposes are based on the arm's length principle 

(defined in the OECD Transfer Pricing Guidelines for Multinational Enterprises and Tax 

Administrations) that the transfer price should be the best estimate of the price as if the 

two divisions involved were indeed two independent entities, not part of the same firm 

structure. The details on how to determine the transfer price are specified in detail in "the 

transfer pricing regulations" (or "the Section 482 Regulations"), which were published by 

the U. S. Treasury Department on July 1994. Determination of the transfer price is less 

complicated when an intermediate product has its own market outside of the firm, in which 

case, the arm's length price is the market price. This method is referred to as the comparable 

uncontrolled price (CUP) method (Treasury Regulation Section 1.482-3(b)). 

An intermediate product, however, is often specific to the firm and not sold outside of the 

firm, in which case, the market price does not exist and the CUP method is inapplicable. 

The price is then determined by considering the cost and profit structure of the "most 

similar product" available in the market. Benvignati (1985) reports that only approximately 

one-quarter of the multinational firms in the U.S. use the CUP method. More recently, 

Tang (2002) and Ernst&Young (2008) report that the non-market transfer pricing methods 

are commonly used by multinational firms that conduct international transfers of tangible 

products. Two of the most common non-market transfer pricing methods are the cost-plus 
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method (Treasury Regulation Section 1.482-3(d)) and the resale-price method (Treasury 

Regulation Section 1.482-3(c)), which are described below. 

• C O S T - P L U S (CP) M E T H O D . Under the cost-plus method, the transfer price of the 

intermediate product is determined by multiplying manufacturing cost by a fixed 

constant. This markup is based on the gross profit percentage of the sales made by 

the manufacturing division for the most similar product to the market outside the firm. 

This method is appropriate if there exists a similar product that the manufacturing 

division produces and that is sold outside the firm such that reliable information about 

its profit margin can be obtained. 

• R E S A L E - P R I C E ( R P ) M E T H O D . Under the resale-price method, the transfer price is 

calculated based on the price of the final product sold to the customers, by marking 

down the percentage earned by the retail division for the most similar product pur­

chased from the market. Thus, the resale-price method is appropriate if the retail 

division procures a similar product from the market such that its profit margin can 

be obtained. 

Whereas the decision regarding the use of the CUP method is dictated by the existence 

of the market for an intermediate product outside of the firm, the choice between the cost-

plus and resale-price methods is not always clear. A firm typically searches for the most 

similar product that is either sold by the manufacturing division or purchased by the retail 

division, in order to apply an appropriate non-market transfer pricing method. In practice, 

however, not only is it difficult to identify the most similar product in the market, but the 

reliability and accuracy of its transaction data can be questionable. When the most similar 

product is not very close to the original product (for example, in terms of its function, 

type and market geography), the profit percentage needs to be adjusted accordingly. See 

Feinschreiber (2004) and Eden (1998) for details. As a result of these ambiguities, the 

choice of the transfer pricing method and the markup or markdown parameter is often 

at the discretion of the firm (although its decisions need to be justified and are subject 

to investigation by the IRS). Therefore, understanding the impact of the transfer pricing 

method on operational decisions as well as on the profits of the firm and its division can 
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provide valuable insight to the firm. 

5.1.2 Literature Review 

T R A N S F E R P R I C I N G . The performance of a firm under a decentralized decision-making 

environment has been well addressed in the accounting and economics literature starting 

from the classical paper of Hirshleifer (1956). Each division makes decisions to optimize its 

own objective, which often leads to suboptimal outcomes for the firm. The decision of a 

division depends on how the intra-firm transactions are priced, and several transfer pricing 

schemes have been proposed and analyzed. See, for example, Kanodia (1979), Ronen and 

McKinney (1970), Ronen and Balachandran (1988), Yeom et al. (2000) and Baldenius and 

Reichelstein (2006). The focus of these papers is the coordination of divisions in order to 

achieve the firm-wide optimal decision, and it is not the compliance of the transfer pricing 

schemes to tax regulations. 

There are several papers that consider the tax rate differential and the transfer pricing 

constraints imposed by tax authorities. Among these papers, the exact modeling of the 

transfer price and the minutiae of detail vary significantly, reflecting the presence of intrinsic 

ambiguity and flexibility in the transfer pricing regulations and also in practice. In Horst 

(1971) and Copithorne (1971), the transfer price is optimized over an exogenously specified 

range, and this decision is decoupled with other decisions of the firm; consequently, the firm's 

optimal decision shifts as much profit as possible to the tax jurisdiction with the lower tax 

rate, subject to satisfying given constraints. In subsequent papers, the selection of the 

transfer price is coupled with other decisions of the firm. In Samuelson (1982), an upper 

bound imposed on the transfer price is given by the resale price, an endogenous decision 

of the firm (here, a lower bound is given by the production cost, an exogenous parameter). 

The transfer price in Eden (1983) depends on the firm's order quantity decision and its 

dependence is given by a deterministic function, called the customs valuation method. As 

in this chapter, Halperin and Srinidhi (1987) study the cost-plus and resale-price methods 

for transfer pricing and demonstrate how the firm's pricing decision on the final product as 

well as its "most similar product" is distorted from the optimal decision when there is no 

regulation on transfer pricing. All the papers mentioned thus far in this paragraph share 
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two commonalities: deterministic demand modeling and a single decision maker (centralized 

problem). Halperin and Srinidhi (1991) extend their earlier model to a decentralized, where 

coordination can possibly be achieved through profit sharing. 

In this chapter, we study the impact of transfer pricing methods for tax purposes in 

a firm's pricing and production decisions, both in centralized and decentralized settings. 

Since Halperin and Srinidhi (1987) are the closest to this chapter, we highlight the dif­

ferences between the two papers. First, Halperin and Srinidhi (1987) assume that the 

gross profit margin is set to that of the most similar product the firm produces. They are 

concerned about distortion of the production of the most similar product under different 

transfer pricing rules. We, however, assume that such profit margin comes from industry 

average and are more focused on the production and pricing decision of the product directly. 

Second, we incorporate into our model a news vendor-type supply chain framework, which 

is well established in the operations management literature for studying quantity decisions 

under the random demand, whereas Halperin and Srinidhi (1987) only consider production 

decision under the deterministic demand. Lastly, while the main interest of Halperin and 

Srinidhi (1987) is to show the fact that the current transfer pricing regulation causes distor­

tion in the pricing decision, our interest is in comparing the effectiveness and impact of the 

two commonly-used transfer pricing methods, in order to guide managers who can exercise 

discretion in selecting one of these two methods. 

DECENTRALIZED SUPPLY CHAIN: W I T H O U T R E T A I L SALES P R I C I N G . In the absence 

of tax issues, the performance of decentralized supply chains consisting of two divisions 

(manufacturer and retailer) has been well studied both in the accounting literature (e.g., 

Hirshleifer (1956)) and the operations management literature (e.g. Cachon (2003)). In the 

majority of the papers, each division maximizes the expected profit of its division, and the 

retailer makes an ordering decision but not a resale price decision. The most common form 

of the transfer payment by the retailer to the manufacturer is the price-only contract, where 

the payment is proportional to the order quantity. It is well known that the central optimal 

solution (referred to as coordination) cannot generally be achieved by using the price-only 

contract unless the manufacturer earns zero profit. Several papers further analyze the 

price-only contract. In Lariviere and Porteus (2001) and Li and Atkins (2002, 2005), the 
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manufacturer is a Stackelberg leader who sets the transfer price, and the retailer is a follower 

who determines the order quantity. These models contrast with our models, where the 

transfer price is either set exogenously (cost-plus method) or implicitly determined by the 

retailer's decisions (resale-plus method). Recently, Perakis and Roels (2007) characterize 

the loss of optimality due to decentralization under the price-only contract. 

While the loss of optimality is unavoidable in the price-only contract that has a single 

parameter, coordination becomes possible through one of several multi-parameter contracts, 

which include the returns or buyback (Pasternack, 1985; Emmons and Gilbert, 1998), revenue 

sharing (Cachon and Lariviere, 2001; Koulamas, 2006), rebates (Taylor, 2002; Chen et al., 

2007), and quantity discount (Weng, 1995; Khouja, 1996). In all of these contracts, the total 

transfer payment by the retailer depends not only on the order quantity but also on the 

sales quantity, except for the quantity discount contract. 

PRICE-SETTING NEWSVENDOR FRAMEWORK. There has been a growing interest to 

model simultaneous decisions in resale pricing and ordering. By incorporating external de­

mand that is price-sensitive, the price-setting extensions of the classical newsvendor problem 

have permeated the operations management literature, and they are reviewed in Petruzzi 

and Dada (1999) and Yano and Gilbert (2003). The model of price-sensitive demand has 

also been included in the supply chain literature with multiple decision-makers, consisting 

of the manufacturer and the retailer. For example, Li and Atkins (2002, 2005) study the 

price-only contract, which is shown to be incapable of achieving coordination as in the pre­

vious exogenous demand case. Our model with the cost-plus method is an example of the 

price-only contract since the transfer price, though it depends on the production cost of the 

manufacturing division, is exogenous to the decisions of the divisions and the realization 

of stochastic demand. Also, we mention that the buyback contract has been studied by 

Granot and Yin (2005) and Song et al. (2008) in this framework. 

The transfer payment under the contracts mentioned above, including our cost-plus 

method, depends on the retailer's quantity decision but not on her resale price decision. 

In contrast, the transfer payment under the resale-price method depends on both quantity 

and pricing decisions - it is a product of the order quantity and a transfer price that is a 

fraction of the retailer's resale price. The resale-price method can be considered a variant of 
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the price-discount scheme (Bernstein and Federgruen, 2005) or trade promotion (Ailawadi 

et al., 1999), in which the transfer price depends on the resale price charged by the retailer. 

Although the resale-price method and revenue-sharing contract share some similarities, the 

transfer payment does not depend on the realized demand in the resale-price method while 

it does depend on it in the revenue sharing contract. 

All of the aforementioned papers in the operations management literature do not con­

sider the tax impact of the transfer pricing method. Shunko and Gavirneni (2007) and 

Shunko et al. (2008) are the only papers, to our knowledge, that incorporate the tax rate 

differential in their modeling of a two-stage supply chain similar to our own. These mod­

els allow some leeway in determining the transfer price as opposed to following a specific 

transfer pricing method, and this decision is made by the firm before the retailer's decisions 

are made. In Shunko and Gavirneni (2007), computational results show the importance of 

considering the randomness in demand in setting the transfer pricing decision. Motivated 

by this, we consider a supply chain model with stochastic demand. In Shunko et al. (2008), 

they consider outsourcing decisions in a model where demand is deterministic while the 

cost is stochastic. In contrast, we explicitly account for the specific transfer pricing meth­

ods (the cost-plus and the resale-price methods) in the decentralized supply chain within 

a price-setting newsvendor framework, allowing for the possibility that the transfer price 

may depend on the retailer's decision. We study the flexibility of the firm in determining 

the transfer prices in a more controlled manner - through both the choice of the transfer 

pricing methods and the sensitivity analysis of the markup or markdown parameter for each 

of these methods. Our interest focuses on how the structural form of the transfer pricing 

methods for tax purposes impact the firm's performance. 

O P E R A T I O N S M A N A G E M E N T AND F I N A N C E INTERFACE. This chapter rests on the inter­

face between operations management and marketing (through the price-setting newsvendor 

model), and also belongs to the broad area of the operations management and finance in­

terface, through the modeling of the interplay between supply chain management and tax 

planning. This interface between operations management and finance has drawn much at­

tention recently, and while it is not our intention to review papers in this area, we refer 

interested readers to Birge (2000), Babich (2007), Caldentey and Haugh (2009), Federgruen 
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and Yang (2008), and the references therein. Most papers in this area study financing and 

risk management, and the application of operations management to the area of accounting 

and tax has been limited. 

5.1.3 Contribution and Organization 

In this chapter, we address the effect of transfer pricing on supply chain performance under 

demand uncertainty. We specifically examine two transfer pricing methods for tax purposes 

that are sanctioned by tax authorities and widely used in practice. While these methods 

have previously been studied by Halperin and Srinidhi (1987, 1991) who focus on the exis­

tence of the distortion in pricing the most similar product, our main interest is in the direct 

comparison of the two transfer pricing methods. Also, while their papers are based on the 

deterministic demand, we model the uncertainty in demand, and thus the ordering decision 

explicitly incorporates the inventory risk of overage and underage. 

We model the transfer pricing methods with the variants of the price-setting newsvendor 

framework that is well established in the operations management literature, such that our 

results can easily be understood in the context of previous research streams in supply 

chain management. Our analysis shows that the pricing and inventory decision under the 

cost-plus method reduces to the price-setting newsvendor with the suitably modified cost 

parameter. Also, analysis of the resale-price method is a modified version of the price-

setting newsvendor problem, where the modification affects the revenue component of the 

model. While the analysis of the model under the cost-plus follows relatively easily from 

the previous price-setting newsvendor results, the analysis of the model under the resale-

pricing method needs further work. We show that the profit optimization problem under 

the resale-pricing method is quasi-concave problem where the optimal price and quantity 

is obtained uniquely. This approach enables us to find, for each of the two transfer pricing 

methods, several structural properties for the firm's decisions and their profit outcomes. 

We show several sensitivity results; for example, as the parameter of each transfer pricing 

method changes, the total expected firm-wide profit (before-tax) is monotone in the cost-

plus method; however, it is shown numerically that this profit is concave in the resale-price 

method. 
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We perform a comparison of the two transfer pricing methods to address the question 

of which method would be preferable to each division and to the firm's central planner. We 

present some evidence supporting that the resale-price method tends to generates a higher 

firm-wide before-tax profit than the cost-plus method. Numerical results show that the 

cost-plus method tends to allocate a higher percentage of profit to the retail division. This 

result is consistent with the result of Eden (1998) based on the notion of transfer pricing 

continuum, which is applicable to the case where the resale price is however fixed. We, 

furthermore, consider the impact of the difference in the tax rates between the divisions. 

We show how tax differential may change the structural results in our model. Such findings 

will provide insights to tax planners of multinational firms interested in effectively designing 

and managing global supply chains. 

The remainder of this chapter is organized as follows. In Section 5.2, we present the 

model by introducing appropriate notations. In Section 5.3, we analyze the cost-plus method 

and the resale-price method individually and then in comparison. We conclude in Section 

5.4. 

5.2 Model 

We consider a firm consisting of two divisions subject to separate tax jurisdictions. The 

upstream division produces the intermediate good and ships it to the downstream division, 

which faces price-sensitive stochastic customer demand. The focus of this chapter is to 

investigate the impact of the transfer payment between these two divisions when the form of 

payment follows one of several transfer pricing methods commonly used in the international 

tax context, and study the behavior and performance of the decentralized global supply 

chain. 

In our model, the downstream division (hereafter, retailer) determines the retailer's sell­

ing price p and the order quantity q of the product. Then, the upstream division (hereafter, 

manufacturer) decides whether or not to accept the retailer's order, based on the order 

quantity and the pre-specified transfer payment scheme. We emphasize that the details of 

the payment scheme are exogenously given, in compliance with transfer pricing regulations. 
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If the manufacturer accepts the order, he produces the order quantity and ships to the 

retailer. Then, the stochastic demand D(p) arrives at the retailer, and the sales quantity 

is mm{D(p),q}. For simplicity, we assume that any demand in excess of q units is lost 

without any additional penalty, and that any excess inventory is scrapped at no additional 

cost or salvage value. 

We assume that the retail demand function is given by D{p) = D(p, e) = y(p) • e, 

which is composed of the deterministic function y(p) and the nonnegative random variable 

e. The multiplicative demand function is one of the most widely accepted models for the 

price-sensitive demand; see, e.g., Petruzzi and Dada (1999), Monahan et al. (2004), Granot 

and Yin (2005), Wang et al. (2004), Wang (2006) and Song et al. (2008). (The other 

commonly used model is the additive from of demand given by D(p) = y(p) + e; however, 

we use the multiplicative form since it exhibits a desirable property that the magnitude 

of uncertainty increases as the expected demand increases.) It has been documented that 

the multiplicative form appears to be more tractable than the additive counterpart. We 

suppose that the stochastic variable e is nonnegative, and has the support of [d, d], where 

0 < d < d < oo. Let \i = E[e] > 0. We assume that e has the increasing generalized failure 

rate (IGFR) property where a function r(z) defined by 

is increasing in z. It is a mild assumption that is satisfied by many distributions such as 

uniform, exponential, normal and some Weibull distributions. (See Lariviere (2006) for the 

detail.) For the deterministic component, we assume y(p) — ap~b where a > 0 and b > 1. 

Such a negative power demand function has been commonly used both in the price-setting 

newsvendor literature and in the economics literature, including the references mentioned 

above. Note that b indicates the price elasticity of demand. If b > 1, then the demand is 

price elastic, whereas b < 1 implies that it is price inelastic. Just as Wang et al. (2004) and 

Wang (2006), we focus on the case where b > 1 (otherwise, the optimal price could go to 

infinity). 

For the cost model, let cM be the per-unit production cost of the manufacturer. We 

assume that the payment from the retailer to the manufacturer is proportional to the order 

quantity q, and we denote the per-unit transfer price by w. We note that this price is 
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charged to the retailer on the order quantity q, irrespective of the actual quantity she has 

sold. In determining the transfer price w, we consider two transfer pricing methods that 

are commonly used for U.S. tax reporting purposes, (i) Under the cost-plus (CP) method, 

the transfer price is determined by a percentage markup of the manufacturer's cost, i.e., 

w = 7 • cM, where 7 > 1 denotes the markup rate of the manufacturer. The value of an 

appropriate markup 7 is determined based on the profits of other comparable companies 

in the industry, (ii) Under the resale-price (RP) method, the transfer price is a percentage 

markdown of the retailer's selling price, i.e., w = f3p, where /3 € [0,1] is the markdown 

rate of the retailer, and is once again determined based on similar comparable transactions. 

Observe that while w is independent of the decision vector (p, q) in the cost-plus method, it 

depends on p in the resale-price method. In this chapter, we treat both 7 and j3 as exogenous 

constants. We let rM denote one minus the effective tax rate of the manufacturer, such 

that the manufacturer's after-tax profit is rM times his pre-tax profit. Similarly, we define 

TR for the retailer. 

The manufacturer's pre-tax profit is given by 

UM(q) = {w-cM)-q. 

For the retailer, the ordering cost includes not only the payment to the manufacturer, but 

also additional costs due to transportation, inspection and possibly the purchase of raw 

materials. We denote this additional per-unit ordering cost by cR, and thus the retailer 

incurs w + c per unit of the product ordered from the manufacturer. The revenue to the 

retailer is given by p-min{D(p), q}. Therefore, the retailer's expected pre-tax profit satisfies 

ttR(q,P) = -(cR + w)-q + p-E[min{D(p),q}} . 

In our model, the retailer bears the inventory risk of unsold units, and her decision balances 

the tradeoff between the possibility of losing sales opportunities and incurring ordering 

costs for unsold products. The after-tax profits of the manufacturer and the retailer are 

TMUM(q) and rRUR(q,p), respectively. 

We compare the decentralized model to the centralized system, in which the central 

planner's problem is to maximize the firm's total after-tax profit: 

UC(q,p) = rMUM(q)+rRIlR(q,p). 
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(The above objective function assumes that the firm does not repatriate profit from one 

tax jurisdiction to another, and rather use it for reinvestment and expansion within the 

division where the profit is earned. Such a practice is consistent with the evidence provided 

by Shunko and Gavirneni (2007), and this assumption has also been adopted by Halperin 

and Srinidhi (1987, 1991)). We impose a constraint that each of the two divisions must 

make nonnegative profit (to avoid manipulating the transfer price to shift an unlimited 

amount of profit from the high-tax regime to the low-tax regime), i.e., ILR(q,p) > 0 and 

UM(q,p) > 0. Let c = cM + cR. If the effective tax rates for the manufacturer and for 

the retailer are the same (i.e., TM = TR), then it can be shown that IT-7 equals r M (= TR) 

multiplied by the following benchmark quantity: 

nB(<7,p) = -c-q + p-E[min{D(p),q}} , (5.2) 

which is an objective function of the well-known price-setting newsvendor problem due 

to Petruzzi and Dada (1999). (Here, the superscript B stands for the benchmark system 

without considering taxes.) Otherwise, if the tax rates differ and the transfer price w 

is endogenous (i.e., the central planner can arbitrarily choose a price for its intra-firm 

transaction), then the optimal value of w will be chosen such that all the profits of the 

firm will be shifted to the division with the lower tax rate (see Samuelson (1982) for a 

similar argument). Furthermore, in this case, it can be shown that the optimal value of 

(p,q) will again be the solution to the problem of maximizing (5.2), and that the optimal 

value of Uc is m a x { r M , r ^ } times the optimal value of UB(q,p) in (5.2). We can also view 

the benchmark quantity as the total before-tax profit of a firm. For the remainder of this 

chapter, we assume that the choice of the transfer price is not arbitrarily endogenous and 

must follow either the cost-plus method or the resale-price method. 

We summarize the relationship among the optimal expected profits in the following 

proposition. Let (pR,qR), (pC,qC) and (pB,qB) be the optimal solutions maximizing II* 

U.c and n B , respectively. 

P r o p o s i t i o n 5 .2 .1 . 

(a) max{TM,TR}-TlB(q,p) > Uc(q,p) = TMIlM(q) + TRUR(q,p) for any (q,p). 

(b) max{TM,TR}-UB(qB,pB) > Uc{qc,pc) > TMUM{qR) + TRUR{qR,pR) . 
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The proof of this proposition is straightforward and is omitted. Part (b) of Proposition 

5.2.1 shows that the gap in the performance between the decentralized system and the 

benchmark system consists of the two components. The first inequality in the left hand 

side occurs since the infra-firm payment cannot be made arbitrarily and must comply to 

transfer pricing regulations for tax purposes. We refer to this as the tax regulation effect, 

which is given by max{rM ,TR} • HB(q,p) — Hc(qc ,pc). The second inequality, given by 

n C ' {q c , p C ) — TMHM(qR) + TRYlR(qR,pR), comes from the double marginalization effect 

which is due to the fact that the retailer maximizes her own profit as opposed to the overall 

firm profit. 

5.3 Analysis 

In this section, we analyze our model. Since demand is a random function of price, the 

retailer makes both pricing and inventory decisions by striking a balance not only between 

higher price and more sales, but also between excess inventory and lost sales. When the 

retailer sets price p and order quantity q, the retailer pays the manufacturer w • q where w 

is the transfer price, set by one of the transfer pricing methods. The retailer's revenue is 

p • mm{D(p),q}. 

It is convenient to define the stocking factor 

z = q/yip) , 

and consider the retailer's decision with respect to (z,p) instead of (q, p). Such a substitution 

has been used in the operations management literature by Petruzzi and Dada (1999), Li 

and Atkins (2002) and Wang et al. (2004). Also define the overage and underage functions 

by 

A(z) = E[(z - e)+] and G(z) = E[(e - z)+] . 

Then, it follows that 

H-e(z) = z-A(z). (5.3) 

In Section 5.3.1, we first study the benchmark system without considering tax rate 

differential. Then, we analyze the cost-plus method and the resale-price method in Sections 
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5.3.2 and 5.3.3, respectively, and we compare the cost-plus and resale-price methods in 

Section 5.3.4. We examine the effect of demand variability in Section 5.3.5. 

5.3.1 Benchmark System 

We consider the benchmark system, where the objective is to maximize the total expected 

profit of the supply chain without considering taxes. This problem is formulated as the 

price-setting newsvendor problem, well-known in the operations management literature. We 

review some known results for this problem, and establish new properties. The benchmark 

system is useful in analyzing the optimal decisions of the decentralized system as well as in 

comparing its performance to the decentralized system. 

The expected profit of the benchmark system with price p and stocking factor z with 

cost c satisfies 

UB(z,p;c) = p-E[mm{q,D(p)}]-c-q 

= y(p)l(fi-G(z))p-cz} . (5.4) 

Recall c = cM + cR. We denote by zB the optimal stocking factor, and let qB = qB(zB) and 

pB _ pB^zB^ k e £ n e optimal price and quantity, respectively. The corresponding optimal 

expected profit is denoted by IT8* — UB(zB,pB(zB); c). The problem of maximizing (5.4) is 

a price-setting newsvendor problem, for which we establish structural properties in Lemma 

5.3.1 below. Let JL denote independence, and let oc denote proportionality. 

L e m m a 5.3.1. In the benchmark system, 

(a) The optimal price for a given z is given by 

Bi - be z 
p [z) = 6-1 /z-e(z) ' 

(b) HB(z,pB(z);c) is equal to ^£j • qB(z), which is quasi-concave in z. Also, 

zB ±c , pB oc c , qB oc c~b and UB* oc c"^"1) . 

Part (a) is a standard result from Petruzzi and Dada (1999), which is a consequence 

of the particular choice of the price-dependent demand function. In part (b), the result 
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that zB JL c is due to Wang et al. (2004). The stocking factor zB is independent of the 

cost c because the optimal price in (a) is also linear in c, thus canceling its effect. They 

have also shown an intuitive result that pB is increasing in c, but have not established this 

relationship is linear. The results regarding the quantity qB and the profit IT8*, that both 

of these quantities are convex decreasing in the cost c, are not surprising, but they have not 

yet appeared in the literature, to the best of our knowledge. We believe that these results 

shed additional light to the classical price-setting newsvendor problem. 

5.3.2 Cost-Pius Method 

In the cost-plus method, the transfer price is set to a markup rate times the manufacturer's 

cost, i.e., w = 7 • cM where 7 > 1. In the decentralized system, the decisions of both 

price and order quantity are determined by the retailer, and the manufacturer decides 

whether or not to accept the retailer's order. Any transfer price w > cM results in a non-

negative profit for the manufacturer, and as a result, he accepts the order provided that the 

parameter 7 is at least 1. In the centralized system, where the central planner makes both 

pricing and quantity decisions, the nonnegativity requirement for the manufacturer's profit 

is automatically satisfied provided that 7 > 1. We first consider the decentralized system, 

and then compare it to the centralized system. The analysis of this section is based on the 

reformulation of the given problems as price-setting newsvendor problems, and applying 

the properties that have now been established for such problems (Lemma 5.3.1). 

D E C E N T R A L I Z E D SYSTEM. 

Consider the retailer's optimization problem in the decentralized system. Define 

c(7) = cR + 7 c M . (5.5) 

This represents the effective per-unit cost to the retailer. Under the cost-plus method with 

the transfer price set at w — ̂ fcM, the retailer's expected profit is 

IlR(z,p) = p-E[mm{D(p),q}}-c(1)-q 

= n B ( z , p ; c ( 7 ) ) (5.6) 

Note that this expression is the same as HB(z,p]c) in (5.4) except that c is replaced by 

£(7). Thus, the retailer's problem is also a price-setting newsvendor problem. As discussed 
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in Section 5.3.1, the retailer's optimal price p for a given stocking factor z is given by 

p (z) — 
6 - 1 / z - G ( z ) ' 

and UR(z,pR(z)) has the unique maximizer zR which satisfies the first-order condition 

dUR(z,pR(z))/dz = 0. 

The following lemma summarizes the sensitivity of the optimal price, quantity and the 

expected profit on the markup rate 7. Increasing 7 results in an increase in the transfer 

price from the retailer to the manufacturer. Let pR = pR{zR) and qR = qR(zR) denote the 

retailer's optimal price and order quantity. We denote the expected profit of the retailer and 

the corresponding expected profit of the, manufacturer when the retailer chooses her optimal 

price and quantity with z = zR, by 11^* = 1 1 ^ ( 2 ^ , ^ ) and UM (zR,pR), respectively. 

L e m m a 5.3.2. In the decentralized system under the cost-plus method, IiR(z,pR(z)) is 

quasi-concave in z. Also, 

zR ± c(7) , pR oc 6(7) , qR oc c(j)~b and UR* oc eft)"*6"1) . 

Furthermore, zR — zB. 

The above lemma shows that the retailer's profit HR(z,pR(z)) initially increases in the 

stocking factor because of the increased sales and revenue, but eventually decreases because 

of the overage cost. Thus, the optimal choice of the stocking factor zR can be found using the 

first-order condition. Since 6(7) = cR- + 'ycM, the lemma implies that zR is also independent 

of the markup rate 7. This result can again be explained by the fact that the retailer's price 

pR is linearly increasing in the retailer's effective cost 6(7) (and also in 7). We also obtain 

that as the markup rate 7 increases, the retailer's cost for each unit increases, resulting in 

lower quantity qR. It is expected that the retailer's profit n^* decreases in the markup rate 

7-

The manufacturer's expected profit is expressed as 

UM(zR,pR) = q(zR){w-cM) = y(pR) • zR • (7 - 1) • cM . (5.7) 

While Lemma 5.3.2 has shown that the retailer's optimal expected profit HR* is decreasing 

in 7, the following lemma shows that the corresponding manufacturer's expected profit 
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UM(zR,pR) is unimodal in 7. Increasing in 7 initially increases the manufacturer's profit 

as it increases the margin of each unit, but it eventually decreases his profit because the 

retailer is too squeezed to order sufficient quantities. However, Lemma 5.3.3 (b) shows that 

the ratio U.R*/HM(zR, pR) is decreasing in 7, which means that the retailer's share of the 

overall profit also decreases as the manufacturer increases its markup rate to the retailer. 

L e m m a 5.3.3. In the decentralized system under the cost-plus method, 

(a) HM(zR,pR) is quasi-concave with respect to 7 achieving its maximum at j M where 

•r - ^ , 

and 7 M > 1 . 

(b) The ratio of the retailer's optimal expected profit to the manufacturer's corresponding 

expected profit satisfies 

IlR* _ 7 + cR/cM 1 

UM(zR,pR) ~ 7 - I 6 - 1 ' 

which is decreasing in 7. 

(c) With respect to 7 (7 > 1), the total after-tax profit, TRUR*+ TMUM(zR,pR), is either 

decreasing (ifrR > rM) or quasi-concave (if TR < TM) that is maximized at^c where 

1° = 
b + (l-TR/rM)cR/cM 

(b-l) + TR/TM ' 

Although 7 is not a decision variable in our model, the analysis in Lemma 5.3.3 provides 

insights for the retailer or central planner's choice between the two methods. Observe that 

the manufacturer's optimal markup rate 7 M given in part (a) is robust such that it is 

independent of the randomness in demand e, and depends only on the ratio of costs and 

the demand elasticity b. In addition, for fixed 7, note that the ratio of retailer's optimal 

expected profit to the manufacturer's corresponding expected profit is independent of the 

randomness in demand e. These result comes from the fact that the stocking factor zR is 

independent of e in the multiplicative demand model. Lemma 5.3.3 (b) also implies that the 

retailer's share of the total before-tax profit is bounded above by 1/b. Thus the retailer are 
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assured to make more than 1/6 of the total before-tax profit in the cost-plus method. (See, 

section 5.3.4 for its implication in the comparison of cost-plus and resale-price methods.) 

It is intuitive to see that 7 M is decreasing with respect to cR/cM, i.e., the manufacturer 

makes relatively less margin when its profit is maximized as the cost of the manufacturer 

becomes relatively higher than the retailer. Furthermore, as for the total after-tax profit, 

the ratio of the tax rates to the manufacturer and retailer is another important factor that 

affects the 7 C . It is intuitive to observe that as TR/TM decreases, 7 C decreases to 7 , 

which implies that the manufacturer's profit becomes more important in the total after-tax 

profit 

C E N T R A L I Z E D S Y S T E M . 

We now consider the central planner's problem of maximizing the after-tax total ex­

pected profit of the firm's supply chain. Let Hc(z,p) denote the expected profit of the 

centralized system. Then, 

Uc(z,p) = rR-UR(z,p) + TM -nM(z,p) 

= TR{y(p)[(»-e(z))p-cWz}} + rM{y{p)z{1-l)c
M} 

= rRUB(z,p;5) , 

where £(7) = cB + ^cM as defined in (5.5), and 

c(7) = c + ((TR - TM)/TR) • (7 - 1) • cM . (5.9) 

Note that this is another price-setting newsvendor problem of type (5.4) where the cost 

parameter is given by 0(7). Also, notice that the second term in (5.9) represents the 

adjustment to the cost parameter accounting for tax differences. If the retailer's effective 

tax rate is lower than the manufacturer's tax rate (i.e., r > TM), then it is better to 

accumulate profit at the retailer than at the manufacturer. It is achieved in our model by 

setting the cost higher than the actual cost (i.e., 0(7) > c), which induces that the retailer 

orders those units only if he is more certain to sell them. The cost parameter 0(7) is also 

expressed as 
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It is observed from the above equation that the new cost parameter is weighted average of c 

and 5(7); as the effective tax rate of the retailer becomes more greater than the rate of the 

manufacturer, the new cost parameter becomes closer to 6(7), implying that the problem 

is closer to the retailer's profit optimization problem. The central planner's problem is to 

maximize IT (z,p) subject to the condition that both the manufacturer and the retailer 

earn nonnegative profit, i.e., UM(z,p) > 0 and HR(z,p) > 0. The first constraint is always 

satisfied from the definition of HM(z,p) in (5.7) and 7 > 1. The second constraint can 

be shown to be a lower bound constraint on the retail sales price p. The price-setting 

newsvendor problem with a lower bound constraint is equivalent to a concave-function 

maximization with a linear inequality constraint, which is not difficult to solve analytically. 

Let pc(z) be the value of p that maximizes Tlc(z,p) subject to the constraints. Similarly, 

let zc and pc — pc(zc) denote the optimal decisions in the centralized system. 

L e m m a 5.3.4. In the centralized system under the cost-plus method, 

- • ^ ) • JI=§(5J if 1-!<•&£$ 
Z if r,, 1 - ^ CR+C 

Furthermore, zc = zB'. 

In Lemma 5.3.4, the first case corresponds to an unconstrained price-setting newsven­

dor solution of Lemma 5.3.1, and the second case corresponds to a boundary solution. 

Interestingly, the condition separating these two cases is independent of the distribution of 

e. Furthermore, if e is deterministic, then the multiplicative factor zc/(/x — Q(zc)) is 1, 

simplifying the expression for pc'. 

E X A M P L E : U N I F O R M [0,2] RANDOM DEMAND. 

We consider the case where e ~ U[0, 2], one of the most commonly used examples in 

the literature - see, for example, Granot and Yin (2005) and Emmons and Gilbert (1998). 

Thus, \x = 1. Consistent with Chen et al. (2007), Granot and Yin (2005), we set a — 1 and 

b = 2; thus, y{p) = p~2. Also set cR = cM = 1. For the tax rates, we consider three cases 

where (TR,TM) is either (1.0,1.0), (1.0,0.8) or (0.8,1.0). (The corporate tax rate for the 

U.S. is from 15% to 35%. Assuming 35% tax rate for the U.S., the tax rate for Thailand 

(30%) or Indonesia (28%) is around 80% of that for the U.S.) Figure 5.1 corresponds to the 
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cost-plus method, where the first row displays the profits as a function of the markup rate 

7 and the second row displays the price decisions as a function of 7. 

In all three cases, the retailer faces the same problem, and the profits of the retailer 

and the manufacturer also remain the same after being adjusted for tax rates. In the 

decentralized system, the retailer's profit is decreasing in 7 (which affects her purchase cost 

from the manufacturer), and the manufacturer's profit is unimodal achieving its maximum 

around 7 = 3. However, the total after-tax profit in the decentralized system, TRHR* + 

T TlM(pR), depends on the tax rates. When the manufacturer's tax rate is at least the 

retailer's tax rate, i.e., rM < TR (the first two columns), we observe that it is decreasing in 

7, and is maximized when the manufacturer makes no profit (i.e., 7 = 1). This is due to 

the fact that either only the double marginalization effect exists (in the case of rR — TM) 

here, or the tax regulation effect favors increased profit at the retailer's side (in the case 

of TR > TM). In addition, the retailer in the decentralized system selects price pR within 

\pB,pc]- However, in contrast, when the retailer's tax rate is higher, i.e., TR < rM (the third 

column), the total after-tax profit is quasi-concave and is maximized when 7 is slightly yet 

strictly greater than 1, as consistent with Lemma 5.3.3. In this case, the quasi-concavity of 

the profit is due to the trade-off between the double marginalization effect and tax regulation 

effect which here favors increased profit at the manufacturer's side. In addition, in this case, 

p may be smaller than the benchmark price pB, which occurs to satisfy the manufacturer's 

profit feasibility constraint HM(pR) > 0. 

Note that the centralized system can achieve the profit of the benchmark system for a 

specific value of 7. This value of 7 is exactly 1 if the manufacturer's tax rate is at least the 

retailer's tax rate (i.e.,TR > TM); otherwise, the best value of parameter 7 is greater than 

1, and is obtained by balancing the opposing forces of the tax regulation effect (preferring 

higher 7) and the double marginalization effect (preferring lower 7). 

We discuss the impact of demand uncertainty in Section 5.3.5. 

5.3.3 Resale-Price Method 

We now study the resale-price method with the random demand model. Under the resale-

price method, the transfer price is set to j3p, where j3 G [0,1] is the exogenously determined 
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markdown rate, and p is the selling price of the retailer. We first analyze the decentralized 

system where the retailer decides both the pricing and quantity decisions and the manufac­

turer either accepts or rejects the order, and then consider the problem of the centralized 

system. 

DECENTRALIZED S Y S T E M . 

In the decentralized system with the transfer price w = ftp, the retailer's revenue is p 

per unit sold, and her cost is cR + ftp per unit ordered. Thus, her expected profit for given 

{z,p) is 

UR(z,p) = p-E[mm{D{p),q}}-(cR + ftp)-q 

= y(p) [{n - Q(z) - ftz)p - cRz] = y(p) [X(z)p - cRz] , (5.10) 

where for notational convenience, X{z) is defined by 

X(z) = -ftA(z) - (1 - ft)O(z) + (1 - ft)fi = fi ~ ®{z) - ftz . (5.11) 

Notice that (5.10) is similar to (5.4) except that \x — @(z) term adds —pz and c is replaced 

with cR. 

We note that while the retailer's problem with the cost-plus method (in Section 5.3.2) 

was transformed to a price-setting newsvendor problem (benchmark system), the above 

problem with the resale-price method cannot be transformed to a price-setting newsvendor 

problem. This is due to the fact that the retailer's effective cost cR + ftp depends on the 

price decision p. The manufacturer's profit is given by 

TlM(z,p) - (ftp-cM)-q. (5.12) 

The retailer's decision must ensure the nonnegativity of HM(z,p), which is equivalent to 

P > cM/ft . (5.13) 

(Otherwise, the manufacturer would not accept the order.) 

We first consider the retailer's pricing decision for fixed z, and show that her profit is 

quasi-concave in her price. We differentiate 11^ in (5.10) with respect to p. Since y(p) = 

ap~b, we have y'(p) = —by{p)/p, it follows 

duR(z,P) _ y(p)i_{b_1)x{z)p + cHbz\ ( 5 1 4 ) 
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Prom (5.10), we observe that X(z) < 0 implies that the retailer's profit is always non-

positive. Thus, we restrict our attention to the case X(z) > 0 for the remainder of this 

section. 

Since the expression in (5.14) is a product of a positive factor and a linear factor, 

8IiR(z,p)/dp changes sign at most once from positive to negative as p increases, and thus 

HR(z,p) is quasi-concave in p. The unconstrained maximizer of HR(z,p) for fixed z is 

obtained by setting (5.14) to zero, which results in |§-j- • WJY • If this solution is not feasible 

in (5.13) then the boundary solution p = cM//? is the maximizer. Therefore, we obtain the 

following result. 

L e m m a 5.3.5. In the decentralized system under the resale-price method, we fix z such that 

X(z) > 0. Then, YLR(z,p) is quasi-concave inp, and the optimal solution for m&Xp{IlR(z,p) \ p > 

cM//?} is given by 

R . , ( bcR z cM) I ^ ifP<b-^-
p (z) = m a x , , , — x 

. 6 - 1 X{z) P) yb£l._j_ otherwise. 

We comment on the boundary solution pR(z) = cM j'(5 which occurs when /? < ^y- • %j- • 

—^J-. This boundary solution results in zero profit for the manufacturer. For the retailer's 

problem, since pR(z) is independent of z, the maximization of ILR(z,pR(z)) is a regular 

(not price-setting) newsvendor problem. Thus, the problem of finding the optimal value 

of z, denoted by zR, is easy to solve. Therefore, we proceed by assuming otherwise, i.e., 

a ^ 6-1 c™_ * M 
P > b ' cR ' z • 

Substituting pR(z) = |^y • jA^j to 11^ and simplifying the expression lead to 

UR(z,pR(z)) = y(pR(z))-^ = ^ . q ^ z ) , (5.15) 

where qR(z) = y(pR(z))-z. The maximization of TlR(z,pR(z)) is similar to the maximization 

of the benchmark profit ILB(z,pB(z)) in Lemma 5.3.1, but additional technical difficulty 

arises here because the linearity of pR{z) in z no longer holds in this case. However, we can 

establish that HR(z,pR(z)) is unimodal in z and has a unique maximizer zR. 

Define G{z) = \X'(z) • z]/X(z). Let zR denote a maximizer of UR(z,pR{z)). The next 

lemma states that the optimal price and stocking factor under the resale-price method can 

be obtained uniquely. (Recall that d is an upper bound on the range of e.) 
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Theorem 5.3.6. In the decentralized system under the resale-price method, suppose that 

/3 > ^jp • ̂ —~-- Then, pR(z) is increasing in z, and HR(z,pR(z)) in (5.15) is unimodal 

in z. Furthermore, if there exists z such that G(z) = (b — l)/b, then zR = z; otherwise, 

zR = d. 

Now, we address the sensitivity results with respect to the markdown rate j3. We recall 

from Section 5.3.2 that under the cost-plus method, as the markup rate 7 increases, the 

retailer's stocking factor zR does not change, price pR increases, quantity qR decreases, 

retailer's expected profit IT^* decreases, and finally the retailer's share of the overall profit 

also decreases (Lemma 5.3.3). Below, we show analogous sensitivity results with respect 

to the markdown rate f3 under the resale-plus model, with the difference being that the 

stocking factor zR now decreases in (3. (Loosely speaking, z is related to the newsvendor 

ratio, which is (p — w)/p = 1 - / 3 . As (3 increases, 1 — (3 decreases.) Denote the optimal zR 

for given j3 by z§. While most sensitivity results in the cost-plus method are independent 

of the randomness of the demand, some of the following results regarding the sensitivity of 

the optimal solutions with respect to (3 need a condition that depends on the distribution 

of e. Recall that r(z) = (f(z)z)/(l — F(z)) is the generalized failure rate given in (5.1). 

Theorem 5.3.7. In the decentralized system under the resale-price method, suppose that 

(3 > ^jp • S r ~ ^ holds. Also, suppose that the maximizer z of HR(z,pR(z)) exists and 

satisfies G(zR) — (b — l)/b. Then, (a) zR decreases in f3, (b) HR(zR,pR) decreases in (3, 

(c) qR decreases in (3, and (d) if (b — l)r(z§) > 1 — (3, pR increases in f3. 

Now, we turn our attention to the ratio of expected profits between the retailer and 

manufacturer. The retailer's profit 11^* = UR(zR,pR(zR)) is given by (5.15), and the 

manufacturer's expected profit from (5.12) is 

IiM{zR,pR) = (13 • pR(zR) - cM) • y{pR(zR)) • zR . 

Thus, we have 

UR* ^ CR 

nM(zR,pR) ~ {b - l)(/3p{zR) - cM) ' 

and this ratio is decreasing in f3 since pR = p(zR) is increasing in f3 (Theorem 5.3.7), under 

the condition in the theorem. This result is consistent with the similar monotonicity of the 

analogous quantity with the cost-plus method (Lemma 5.3.3). 
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CENTRALIZED S Y S T E M . 

We now consider the after-tax optimal profit from the perspective of the central planner, 

and show that this problem can be cast in a form that is similar to the retailer's problem 

in the decentralized system. The firm's total after-tax profit under the resale-price method, 

n c = TRTIR + r M n M , can be expressed as 

n c = rRy(p) Up - S(z) - P)p - 0cz\ (5.16) 

where /? = (1-TM/TR)-P and c = cR+(rM/TR)-CM. We remark that if TR = TM, then the 

right-hand-side expression in (5.16) corresponds to the standard price-setting newsvendor 

problem, whose optimal price and stocking factor are independent of rR and rM. 

We require the constraint that both the manufacturer and the retailer earn nonnegative 

expected profit, i.e., ITM > 0 and 11^ > 0. The first constraint IiM > 0 is equivalent to 

P > c M / /3 . The second constraint 11^ > 0 is not guaranteed by a simple inequality such 

as p > cR/(l — P) because of the excess inventory risk assumed by the retailer, and this 

constraint is equivalent to X(z)p — cRz > 0 from (5.10). 

Note that this expression (5.16) is the same form as the retailer's objective function 

(5.10) where /5 and c are replaced by /3 and c, respectively. Therefore, we can obtain the 

optimal pair of z and p in a similar manner as the retailer's problem in the decentralized 

system. Similar to the definition of X in (5.11), we define X(z) = /x — &(z) — 0z. Then, 

similar to (5.10), we obtain that n c \ z , p ) / r R = y(p) • [X(z)p — cz}. This expression is 

quasi-concave in p for fixed z. Furthermore, the two constraints I I M > 0 and U.R > 0 

impose lower bounds on p, i.e., p > cM/(3 and p > cRz/X(z). Thus, finding the optimal p 

for given z is an easy problem, and the optimal value of pc(z) is either the unconstrained 

minimizer r^T-^rr or the maximum of the lower bounds. (The result follows the argument 
D-i X(z) 

of Lemma 5.3.5.) Now, the problem of finding the optimal zc maximizing Ti.c(z,pc(z)) can 

be conducted through a simple single-dimensional search in the interval [d, d]. 

E X A M P L E : UNIFORM [0,2] RANDOM DEMAND. 

We revisit the earlier example of e ~ U[0,2] with a = 1, b — 2 and cR = cM = 1. 

Figure 5.2 shows the profits and prices under the resale-price method when (TR,TM) G 

{(1,1), (1,0.8), (0.8,1)}. In the decentralized system, the retailer faces the same problem in 

all three cases, and her optimal price satisfies pR = g^j • j^r. This expression is valid only 
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for j3 exceeding a certain threshold value. If this condition does not hold, then the manu­

facturer's profit TMYLM(pR) is zero. We observe that the retailer's after-tax profit r ^ I I 

achieves the highest when the markdown rate /? is around 0.2, whereas the manufacturer's 

profit IlM(zR,pR) is highest at a large value of around /3 = 0.5. We note that both TRHR* 

and TMTlM(zR,pR) are quasi-concave with respect to ft. 

The total after-tax profit in the decentralized system, TRIIR* + TMUM(zR,pR) is quasi-

concave in each of the two intervals based on the above-mentioned threshold value, and the 

local maximizers in each of these intervals are interior solutions. (This is in contrast to the 

cost-plus case where, if rR > TM, the total after-tax profit is maximized by the extreme 

markup rate value of 7 = 1, in which case, the manufacturer's profit is always zero.) Thus, 

as Ailawadi et al. (1999) have pointed out, the resale-price method has a desirable property 

which is that both the retailer and manufacturer can make positive profits when the total 

before-tax profit is maximized. Then, it may be easier for the two divisions to coordinate 

under the resale-price method than under the cost-plus method. 

5.3.4 Comparison of the Cost-Pius Method and the Resale-Price Method 

In this section, we compare the properties of the cost-plus method and the resale-price 

method, focusing on the decentralized system. 

We first directly compare the profits under each parameter values 7 and /?. For each 

combination of parameters values 7 and j3 in the model, Figure 5.3 shows which of the two 

transfer pricing methods generates higher expected profit for the retailer, for the manufac­

turer, or for the total system. The gray area in the figure indicates that the profit under the 

resale-price is higher than that of the cost-plus method. Demand is uniformly distributed 

between 0 and 2. We note that the retailer makes more profit under the resale-price method 

when the markdown parameter j3 of the resale-price method is close to 1 (thus keeping most 

of the revenue), and the markup parameter 7 of the cost-plus method is small (thus not 

paying much margin to the manufacturer). The figure also shows that the manufacturer 

generally prefers to resale-price method to the cost-price method. The firm-wide profit of 

the firm is higher under the resale-price method generally when (3 is reasonably high (such 

that the retailers profit becomes similar to the firm-wide profit), but the threshold level 
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of /3 is dependent of 7. This is helpful to the central and local management who face the 

decision of selecting which transfer pricing method to use. 

Since the parameters 7 and (3 of these methods do not naturally correspond to each 

other, comparing these methods directly is not straightforward. We thus take two indirect 

approaches. In the first approach, we compare two methods by choosing the parameters 

such that the retailer's profits remain the same in both methods, and then we compare the 

manufacturer's profits. By restricting our attention to the deterministic demand case where 

e = 1, we are able to prove that the resale-price yields higher profit to the manufacturer than 

the cost-plus method in this comparison. In the second approach, we choose parameters 

such that the share of the retailer's profits from the total profit remain the same in both 

methods and compare their profits. In our notation, we use the subscript CP and RP to 

denote the cost-plus method or the resale-price method, respectively. 

FIXING R E T A I L E R ' S P R O F I T S . For the fist approach, we assume that the demand is 

deterministic. We now fix the retailers' profits to remain the same in both methods. In 

particular, we choose the markdown rate of the resale-price method, such that the revenue 

is shared between the retailer and the manufacturer according to their relative contribution 

to the production, i.e., ft = cM/c. Since the retailer decides the price and quantity of 

the product, we then calculate the markup rate of the cost-plus method such that the 

retailer's profits are the same under both methods. In the following theorem, we establish 

the relationship between the manufacturers' profits under the two transfer pricing methods. 

T h e o r e m 5.3.8. Assume that the demand is deterministic, i.e., e = 1. Let (3 = cM/c, 

and let 7 such that H§*P = ^RP- Let PQP and p^p be the retailer's optimal selling pric­

ing decision under the cost-plus method and the resale price method, respectively. Then, 

n&p{pBP)<n%P<i$p). 

The theorem implies that the manufacturer makes relatively less profit in the cost-plus 

method than in the resale-price method, if the parameters are chosen such that the retailer 

makes the same amount of profit under both methods. It is surprising that such inequality 

can be established. The proof of the above theorem is found in Appendix D.7. 

FIXING R A T I O O F P R O F I T S . We compare the profits under the cost-plus method and 

the resale-price method computationally, by fixing the retailer's share of the total after-tax 
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(a) Comparison of the retailer's profits under CP 

and RP 

Manufacturer profit 

(b) Comparison of the manufacturer's profits un­

der CP and RP 

(c) Comparison of the total profits under CP and 

RP 

Figure 5.3: Comparison of the profits under the cost-plus and the resale-price methods. 

The gray area indicates that the profit under the resale-price method is higher than that 

under the cost-plus method. 
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profit in the decentralized system (shown on the horizontal axes). We continue with the 

example of a = 1, b = 2, cM = cR = 1 and e ~ U[0,2]. As shown in Figure 5.4 (a), while 

the resale-price method allows an arbitrary division of profits between the retailer and the 

manufacturer, the retailer's share of the profit under the cost-plus method is always higher 

than half (1/6 = 0.5) of the total profit if tax rates are the same (from Lemma 5.3.3 (b)). 

Thus, the resale-price method is not appropriate when the retailer wants to avoid a situation 

where the retailer's profit is less than half of the total firm profit. We also observe that for 

both the retailer's profit and the manufacturer's profit, the cost-plus method is preferable 

when the retailer's profit is much higher than the manufacturer's (i.e., the ratio is close to 

1); otherwise, in general, the resale-price method tends to outperform the cost-plus method. 

The comparison of after-tax profits, shown in Figure 5.4 (b) and (c), is not straightforward 

as that of before-tax profits; for example, the retailer's share of the total after-tax profit 

under the cost-plus method is now bounded above by l/[(b — 1)TM/TR + 1] and this ratio 

depends on the ratio of r M and TR. 

5.3.5 The Effect of Variability in Demand 

In Sections 5.3.2 and 5.3.3, our analysis has shown the robustness of our results with respect 

to the demand variability, as the structural properties are not sensitive to the distribution 

of the stochastic component e. In this section, we focus on the decentralized system, and 

examine the impact of demand variability on the optimal pricing and quantity decisions. 

We parameterize the random variable e by 6, which represents the magnitude of demand 

variability. Let e be distributed uniformly in the interval [1 — 5,1 + 6], where 0 < 6 < 1. 

Then, E[e] = 1 and Var[e] = <52/3. Note that 6 = 0 corresponds to the deterministic demand 

model. We use a = 1, b = 2, and cR = cM = 1. 

Figure 5.5 shows the expected profits of the firm, the retailer and the manufacturer. The 

shapes of the plots are familiar from Figures 5.1 and 5.2. While it is not surprising that 

demand variability causes a decline in expected profits, we learn that the cost of variability is 

shared by both the manufacturer and the retailer, and thus any measure to reduce demand 

variability would benefit both divisions. Figure 5.6 shows the optimal pricing and quantity 

decisions of the retailer. Under the cost-plus method, we observe that the optimal prices are 
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Figure 5.4: Expected profits of the central system, retailer, manufacturer, and total supply 

chain against the retailer's expected profit to the total supply chain expected profit. CP 

represents cost-plus method and RP represents resale-price method. 
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(a) Retailer's Price Decision pR (cost-plus) (b) Retailer's Price Decision pR (resale price) 

(c) Retailer's Quantity Decision (cost-plus) (d) Retailer's Quantity Decision (resale price) 

Figure 5.6: Retailer's Decisions in Decentralized Systems: a = 1,6 = 2,cR — cM = l,e ~ 

U[l -6,1 + 6} where 0 < 6 < 1. 

Figure 5.7: Resale-Price vs. Cost-Pius Preference Threshold as a Function of Demand 

Variability: e~U[l-5,l + 6] where 0 < 6 < 1. 
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always higher in the random demand model compared to the deterministic demand model. 

This property is linked to the multiplicative modeling of demand uncertainty - in their 

study of the single-stage price-setting newsvendor model, Petruzzi and Dada (1999) note 

and explain why the multiplicative form of demand uncertainty increases the optimal price 

(whereas the additive form decreases it). Correspondingly, demand uncertainty decreases 

optimal quantities. Now, under the resale-price method, if /? is low, then the prices are 

independent of demand variability 5 since they are at the boundary of the nonnegativity 

constraint of the manufacturer's profit, i.e., p = cM/'/3; if /? is high, this constraint is no 

longer active and the price in the random demand model is higher, as in the cost-plus 

method. 

Recall that , in Figure 5.4, we have compared the cost-plus and resale-price methods 

by fixing the retailer's percentage share of the firm profit, and have shown that when this 

percentage share is low or intermediate, the resale-price method is preferable and when it 

is high, the cost-plus method is preferable. In Figure 5.7, we plot the threshold at which 

the cost-plus method becomes preferable. We see that the thresholds decrease as demand 

variability S increases, which indicates that the cost-plus method becomes more attractive 

as S increases. While this phenomenon cannot be explained easily, the simplicity of the cost-

plus method seems to have positive effects when demand is highly uncertain. Furthermore, 

the presence and magnitude of demand variability affects optimal decisions and outcomes. 

5.4 Conclusion 

In this chapter, we have considered the impact of the transfer pricing methods for tax pur­

poses on the optimal pricing and ordering decisions of a multinational firm. Since transfer 

pricing is regulated by tax authorities, the choice of transfer pricing methods is restricted, 

and two of the commonly-used methods (cost-plus and resale price) are considered in this 

chapter. We have incorporated demand uncertainty into our model, and analyzed the prob­

lem of quantity and pricing decisions in the framework of the price-setting newsvendor model 

and its variant. Our analysis includes details of how to solve the optimization problems as 

well as the properties of the optimal solution. 
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In the cost-plus method, the retailer's proportion of the firm's expected profit can be 

bounded below by parameters of the demand model, and the performance of the decentral­

ized firm is maximized when the retailer takes all the profit if the tax rates are the same. 

However, the resale-price method allows a wider range of profit sharing between the two 

divisions, and the optimal firm-wide solution yields positive profits to both divisions. The 

above comparison of after-tax profit under two methods is not straightforward if tax rates 

differ; a similar conclusion can be reached when the difference in tax rates is not significant 

or the tax rate to the-manufacturer is higher than the rate to the retailer. However, when 

the retailer's tax rate is higher, the result depends on the balancing of the double marginal-

ization effect and tax regulation effect. We compare the two transfer pricing methods in 

terms of profit for a range of parameter values used in these methods. Furthermore, we 

have also compared these two methods by fixing the percentage of the total firm's profit 

allocated to each division. When the retailer's share is small or moderate (i.e., relatively 

weak bargaining power of the retailer), the resale-price method is preferred by both divi­

sions, and when it is high, the cost-plus method is preferred. Interestingly, the performance 

of the cost-plus method, relative to the resale-price method, improves as demand becomes 

more uncertain. 

The current literature of operations management have largely ignored important issues 

arising from the accounting and taxation arena. From our interaction with practitioners in 

public accounting companies, many supply chain decisions are made based on tax consid­

erations. This chapter demonstrates an example of modeling how the accounting and tax 

considerations can make an impact on operational decisions of that firm, and that many im­

portant research questions are yet to be explored in the interface of operations management 

and accounting. 
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Appendix A 

Appendix to Chapter 2 

A. l Overview 

In this appendix we elaborate on several issues investigated in Chapter 2. We start with 

statistical issues. In §A.2 we provide additional details about our statistical analysis of the 

TASS database. Specifically, we describe our estimates of the standard deviation a. In 

§A.3 we describe an alternative ratio method for estimating the persistence of hedge fund 

returns. 

We next turn to the DTMC models. In §A.4 we consider the two-state DTMC model 

without dying funds, which provides a link between §2.5 and §2.6 in Chapter 2. In §A.5, we 

investigate if the difference between the premium pn and the linear approximation pn derived 

in §2.5 of Chapter 2 can be understood by the second term in the two-term asymptotic 

expansion developed there. We show that the second term explains the difference well 

for relatively short-term lockup premiums. In §A.6, we analyze what possible parameter 

values can occur in the DTMC model. Lastly, we supplement §2.7 in Chapter 2 in §A.7 by 

providing additional descriptions of the way the three-state DTMC model parameters and 

the lockup premium depend on basic hedge fund performance measures. We also show how 

the three or four-year lockup premium can be approximated with a simple multiplicative 

form of the three parameters 5, 7 and a, as shown in (2.1) in Chapter 2. 
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A.2 Statistical Results 

In this section we supplement our discussion of sour statistical methods provided in §2.4. 

In particular, we describe our estimates of the standard deviations of the annual returns 

selected above. We display sample standard deviation for selected annual returns in Table 

A.l and observe that they are within the range we consider in this chapter: from 0.05 to 

0.25. For several strategy categories, the number of selected returns is too small to obtain 

meaningful estimates of the standard deviation. Thus, merging all returns from 2000 to 

2004 for each strategy category may give better- insight about the real variability of the 

annual returns. 

Table A.l : Estimated standard deviation of annual returns (%) 

strategy Number of 2000 2001 2002 2003 2004 All 

Convertible arbitrage 

Dedicated short bias 

Emerging market 

Equity macro 

Event driven 

Fixed income arbitrage 

Fund of fund 

Global macro 

Long short equity 

Managed future 

Other 

observation 

244 

30 

325 

270 

534 

196 

982 

176 

1654 

238 

167 

0.07 

0.02 

0.20 

0.12 

0.13 

0.07 

0.12 

0.07 

0.19 

0.13 

0.15 

0.07 

0.15 

0.22 

0.06 

0.09 

0.03 

0.08 

0.11 

0.17 

0.13 

0.06 

0.08 

0.18 

0.15 

0.09 

0.12 

0.08 

0.05 

0.12 

0.15 

0.12 

0.07 

0.10 

0.22 

0.19 

0.06 

0.10 

0.09 

0.06 

0.15 

0.14 

0.14 

0.10 

0.06 

0.14 

0.12 

0.07 

0.08 

0.06 

0.03 

0.08 

0.09 

0.10 

0.07 

0.08 

0.16 

0.17 

0.08 

0.10 

0.07 

0.06 

0.11 

0.14 

0.12 

0.09 
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A.3 Persistence from Ratios of Average Relative Returns 

An alternative way to estimate the persistence factor is to consider the ratio of the next-

year average returns to the current-year average return, restricting attention to the returns 

that are positive in the current year. Table A.2 is the ratio of two successive average 

returns restricting attention to the returns that are positive and negative in the current 

year, respectively. 

Since the average of relative returns is zero by definition, the ratio of averages for positive 

and negative returns should be identical. Howeverr it- does not hold always since we excluded 

outliers of relative returns that would not make the average of relative returns zero. As 

can be seen from Table 2.1 and A.2, these persistence estimates tend to be similar to the 

regression estimates. 

Table A.2: Ratio of average relative returns for good states 

(i) For positive current relative returns 

Strategy current year next year ratio 

average relative return average relative return (7) 

Convertible 6.04 2.32 0.38 

Emerging market 15.31 4.70 0.31 

Event driven 7.29 1.29 0.18 

Fund of fund 4.26 1.56 0.37 

(ii) For negative current relative returns 

Strategy current year next year ratio 

average relative return average relative return (7) 

Convertible -4.12 -1.55 0.38 

Emerging market -12.21 -6.25 0.51 

Event driven -7.33 -1.28 0.18 

Fund of Fund -3.73 -0.69 0.18 



www.manaraa.com

APPENDIX A. APPENDIX TO CHAPTER 2 175 

A.4 The DTMC Model Without Death 

We now return to the DTMC model and elaborate upon the analysis of the case 5 = 0. 

If we consider the DTMC without hedge funds dying, then we can work with a two-state 

DTMC, which has the transition matrix 

G ( p l - p \ 
P = P P } , (A.l) 

S \ 1 - r r J 

which has only the two parameters p and r. 

Let 7r = (7r<3,7rs)""be the steady-state probability vector of the two-state DTMC with 

transition matrix in (A.l) . A convenient explicit expression for n is 

^ ( ^ ' ^ ) = ( ( l - r ) + [ l - - p ) ' ( l - r ) + ( l - p ) ) = ( 2 3 7 ^ ' 2 ^ 7 ^ ) ' ( A " 2 ) 

Since YG and Y$ are the assumed relative returns (deviations from the mean return), 

we can express variance of the fund's relative performance in steady state as 

a2 = TTG • y j + ITS • y | • (A.3) 

To satisfy, (A.3), we calibrate p and r in the transition matrix P of (A.l) . We do this 

from two equations for persistence factor 7, expressed as a function of p and q. 

1-YG=p-YG + {l-p)-Ys (A.4) 

and 

7 • Ys = (1 - r) • YG + r • Ys . (A.5) 

Prom (A.4) and (A.5), we derive that 

-y-Yg-Ys Yg-i-Ys . . . . 

From the above equations, it is straightforward to verify that 

*° = * - l . (A.7) 
a a 

If we fix Ysfo = —1.5, we have 
Yr 1 
_ 2 = „ 0.67 , (A.8) 
a 1.0 

which exactly matches the analysis without Markov chain when 5 = 0. By assuming 

normally distributed annual relative returns, and letting YG be the median of the positive 

returns, we found that YG/a = median {|iV(0, l ) |} = 0.67. 
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A.5 Approximation of the No-death Lockup Premium 

This section supplements §2.5 of Chapter 2 by examining the approximation of pn by the 

two-term Taylor series expansion, in order to estimate pn better than pn with a simple form. 

From the Taylor expansion, we obtain that 

log(x + 1) ~ x and 

ex « 1 + x + —x2, 

for £ close to 0. Applying these approximation formulas to (2.13), we have 

1 . / . „ v ^ _i „ U / ^ . ^ 2 1 

Pn 

(A.9) 

(A.10) 

E 

(A. l l ) 

Thus, we observe that pn can be approximated by the simple formula pn + en. However, it 

is hard to evaluate en analytically due to the dependence between R\ and R\+l in general. 

We thus use Monte Carlo simulation with a large number (105) of relative returns for a 

fund under 1-year and n-year lockup in order to evaluate the lockup premium from 1 to 20 

years. We find that 105 samples are sufficient to produce the same lockup premium to the 

premium obtained from (2.38), with negligible difference. 

We compute pn + en,n = 1,2, ...,20 numerically for three different death rates (5 = 

0.00,0.03,0.06), 7 = 0.5 and the other parameter values in Table 2.2 of Chapter 2. As 

usual, we assume that a fund starts with a good state at the beginning. Numerical analysis 

shows that this en explains the difference between the exact lockup premium (pn) and the 

analytical approximation (pn) reasonably well for relatively small values of n, specifically, 

for n < 5. For example, for 5 = 0, we find that en explains more than 70% of the difference 

between pn and pn for less than five years; see Figure A.l . However, it is also observed 

that as n increases, other higher-order terms omitted in the approximation formula (A. l l ) 
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become increasingly important in the lockup premium. As n increases, it is more likely to 

see sample paths of a fund that become dead and start as a 1-year lockup fund. Notice that 

a 1-year lockup fund produces higher expected relative returns than n-year lockup fund. 

Thus, it is not surprising to see that pn + en becomes less accurate as n increases. 

0 035 

0.03 

0.025 

0.02 

0.015 

0.01 

0.005 

0 -
0 5 10 15 20 

Figure A.l : The DTMC lockup premium (pn), analytic approximation (pn), and two-term 

approximation (pn + en) for 8 — 0, 7 = 0.5, YQ = 0.067, Y$ = —0.15 and YD = —0.20. 

A.6 Possible parameter values in the D T M C Model 

In this section, we supplement §2.6.4 in Chapter 2 and determine what parameter values 

can occur in the DTMC model. Figure A.2 shows the three parameters as a function of 5 

with YG = 0.067, Ys = - 0 . 1 5 , YD = -0 .20 and 7 G = 7 5 = 0.5. 

From (2.30) in Chapter 2, we see that p is a linear function of 7 G with positive slope 

YG/{YG — YS). If YS < 0, then we necessarily have 70 < p < 1. The minimum possible value 

of p, attained when 7 G = 0, is \YS\/{YG+\YS\). For example, if YG = 0.05 > 0 > Ys = - 0 .15 , 

then the minimum value of p is 0.75 (at 7^ = 0) and the slope is 0.25. On the other hand, 

if YQ > Ys > 0, then we must have p < 7G- If, instead, YQ > Ys > 0, then we require that 

j G • YG > Ys. 

From (2.30), we see that p is independent of 5. Since (2.26) implies that S < l—p, there 

is an upper bound on the possible 8, consistent with Figure 2.6. Moreover, that inequality 

can be restated as p < 1 — 8. When combined with (2.30), that yields an upper bound on 
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p,q,r wfien Y - 0.067, Y = -0.15, Y « -0.21 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.0! 

Figure A.2: The DTMC parameter values p, q and r as a function of 5 when YG = 0.067, 

Ys = - 0 .15 , YD = -0 .20 and 7 G = 7 s = 0.5 

7G, which is strictly less than 1: -yG < (l-5) + S(Ys/YG). For YG = 0.067 and Ys = -0 .150, 

7G < 1 - 3.23<$. 

Under the general condition that YG > Ys > YD, we see that q = q(r) via (2.32) is a 

strictly decreasing function of r. The largest possible value of q occurs for r = 0, which 

is (75 • Ys — YD)/(YQ — YD)- In order for q to be feasible (nonnegative), we must have 

that largest possible value be nonnegative. Hence to have a feasible nonnegative value of 

q, we must have 75 • Ys > YD- That is always satisfied provided that YD < 0 (given that 

YG>YS> YD). 

From (2.32) alone, we can find an upper bound on r in terms of 75, Ys and YD- If 

0 > Ys > YD, then we must have (1 — r) |Yo| > (r — 7s ,)|5 /s|, so that 

\YD/Ys\+js 
r < < 1 for 0 < 7s < 1 , 

\YD/YS\ + 1 

where | Y D / Y S | > 1. On the other hand, if Ys > 0 > YD, then we have 

(\YD\/YS)-1S 
r < < 1 , 

(A.12) 

(A.13) 
(\YD\/YS) + 1 

where now | Y D \ / Y S can assume a wide range of values. 

When YG >0>Ys > YD, r has the form r — (a- B)/(A - b), where a < A and b < B, 

so that we always have r < 1. We then have r > 0 if and only if either a > B or A < b; r 

is negative otherwise. To have r > 0, we must have 

(1 - S)(l - 1G)YG - 5{YG - YS)\ [ i s -YS-YD 
a- B = 

(1 - IG)YG YG-YD 
> 0 or (A. 14) 
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h A-(Ys-Yp\ / ( 1 - -yG)YG - S(YG - YS) 
\YG-YD) \ {1-1G)YG 

Examination of (2.33) shows that there can be difficulties in r as ~/G t 1> because the 

term 5(YG — Ys)/(l — 7 G ) ^ G appearing in the terms a and A diverges as JG t 1-

In summary, from this analysis, we see that there is an upper limit on how high the death 

rate 5 and the persistence 7 can be. For the other parameters we consider, the maximal 

possible death rate is 5 = 0.07. 

A.7 Sensitivity Analysis for the D T M C Model 

In this section we do more sensitivity analysis, expanding on the discussion in §2.7 in 

Chapter 2. We first carry out the calculations for the base case, using the parameter values 

derived in §2.6.4. Our model depends on three exogenous variables, 5,7, a. We at first 

emphasized how the lockup premium depends on the death rate 5. It is also important to 

investigate how the lockup premium depends upon 7 and a. 

A.7.1 How the Lockup Premium Depends on 7 ( 7 c 7s) a n d a 

We now see how much the premium depends on the model parameters 7 ( 7 G > 7 S ) a n d a-

Table A.3 shows the model parameters for 7 = 0.4,0.5, and 0.6 and Figure A.3 shows the 

lockup premium for 7 = 0.4,0.5, and 0.6. The figure suggests that as the persistence factor 

7 decreases, the n-year lockup premium decreases. The DTMC model works for persistence 

factor as low as 0.1. However, the n-year lockup premium decreases to the amount lower 

than 0.5 percentage points for any n. Figure A.3 suggests that the estimation of 7 is 

important, especially for small 5 and large n. 

We next consider two separate persistence factors, -JQ and 75 in Table A.4 and the 

sensitivity of the lockup premium with respect to 70 and 75. Note that in the third line 

of Table A.4, r is negative, which breaks down the DTMC model. Figure A.4 shows the 

lockup premium for parameters in Table A.4. 

We lastly check the sensitivity of the lockup premium with respect to a. Our TASS 

database analysis estimates a of annual returns for each year is lower than 0.20 in most 

cases. We here highlight the sensitivity of the lockup premium for a = 0.05,0.10, and 0.15 

) > 0 . (A.15) 
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Table A.3: Parameter value sets for 7 ranging from 0.2 to 0.6 

7 5 p q r YQ YS YD Calculated a 

0.4 0.00 0.8147 0.4147 0.5853 0.067 -0.15 -0.20 0.1002 

0.4 0.03 0.8147 0.4427 0.4360 0.067 -0.15 -0.20 0.1000 

0.4 0.06 0.8147 0.4892 0.1877 0.067 -0.15 -0.20 0.0998 

0.5 0.00 0.8456 0.3456 0.6544 0.067 -0.15 -0.20 0.1002 

0.5 0.03 0.8432 0.3719 0.5030 0.0685 -0.15 ..-0.20 ...0.1001 

0.5 0.06 0.8409 0.4207 0.2282 0.070 -0.15 -0.20 0.1001 

0.6 0.00 0.8765 0.2765 0.7235 0.067 -0.15 -0.20 0.1002 

0.6 0.03 0.8727 0.3029 0.5645 0.070 -0.15 -0.20 0.0997 

0.6 0.06 0.8679 0.3590 0.2324 0.074 -0.15 -0.20 0.1002 

0.2 0.06 0.7615 0.6298 0.0782 0.0637 -0.15 -0.20 0.1002 

0.3 0.06 0.7879 0.5586 0.1374 0.0652 -0.15 -0.20 0.1000 

0.4 0.06 0.8147 0.4892 0.1877 0.067 -0.15 -0.20 0.0998 

with 7 = 0.5. Table A.5 is the parameter value sets and Figure A.5 is the corresponding 

lockup premium. We see that the premium increases in a. 

A.7.2 Sensitivity of p, q, and r with respect to S, YQ,YS, and YD 

In this section, we observe the effect of 5 to the implied transition probabilities p, q, r. Figure 

2.6 is the implied transition probabilities for 5 from 0 to 0.1. It is clear that the transition 

probability from sick to sick state, r, is the most sensitive to 6. Simple calculation of the 

partial derivative of r with respect to 5 shows that 

5 r _ ^(YG-YD) 
(A.16) 

85 (YG-YS)-T^>(YD-YD)' 

From (A.16), we observe that as 5 increases, r decreases more rapidly. Note that the 

coefficient of 5 in (A.16) is (YQ — YD)/{I — p) ~ 1 thus its impact is big. We also observe 

that r becomes negative as 8 increases above 0.07. Thus, the maximum allowable death 
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(a) With 5 = 0 for 7 = 0.4,0.5,0.6 (b) With 5 = 0.03 for 7 = 0.4,0.5,0.6 

(c) With 6 = 0.06 and 7 = 0.4,0.5,0.6 (d) With S = 0.06 and 7 = 0.2, 0.3,0.4 

Figure A.3: The lockup premium for the DTMC model for parameter values in Tables A.3. 

rate in the DTMC model is 0.07. 

The implied transition probabilities are calculated for YQ, YS, and YD in Figure 2.10 

in §2.7. The plots show that p, q, and r are sensitive to YQ, but that there is even more 

dependence upon 7, especially when 7 > 0.75. The sensitivity of p, q, and r to Ys and YD 

is much less, as is shown in Figure 2.10. This justifies that our parameter fitting method 

which changes YQ while fixing YQ and YD since YQ has greater effect to the implied transition 

probabilities than Ys and YD- Notice that from (2.30) of Chapter 2, p is independent of YD 

and a linear function of 7. 

We next consider the sensitivity of the steady-state probabilities TXQ and lis to the model 

parameters. Up until the critical point in 7, the steady-state probabilities T\Q and ixs are 
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Table A.4: Parameter value sets for 7G and 75 

1G Is § P q f YQ YS YD Calculated a 

0.6 0.4 0.00 0.8655 0.3982 0.6018 0.076 -0.15 -0.20 0.1000 

0.6 0.4 0.03 0.8643 0.4320 0.4069 0.077 -0.15 -0.20 0.1002 

0.6 0.4 0.06 0.8637 0.5068 -0.0127 0.775 -0.15 -0.20 0.1000 

0.55 0.45 0.00 0.8547 0.3725 0.6275 0.0715 -0.15 -0.20 0.1000 

0.55 0.45 0.03 0.8527 0.4014 0.4583 0.0730 -0.15 -0.20 0.1002 

0.55 0.45 0.06 0.8513 0.4603 0.1276 0.074 -0.15 -0.20 0.1001 

0.5 0.5 0.00 0.8456 0.3456 0.6544 0.067 -0.15 -0.20 0.1002 

0.5 0.5 0.03 0.8432 0.3719 0.5030 0.0685 -0.15 -0.20 0.1001 

0.5 0.5 0.06 0.8409 0.4207 0.2282 0.070 -0.15 -0.20 0.1001 

Table A.5: Parameter value sets for a — 0.05,0.10,0.15 

a 5 p q r YQ YS = — 1.5a YD = —2.0a a (calculated) 

0.05 0.00 0.8461 0.3461 0.6539 0.0333 -0.075 -0.10 0.05 

0.10 0.00 0.8461 0.3461 0.6539 0.0667 -0.150 -0.20 0.10 

0.15 0.00 0.8461 0.3461 0.6539 0.1000 -0.225 -0.30 0.15 

0.05 0.03 0.8434 0.3721 0.5025 0.0342 -0.075 -0.10 0.05 

0.10 0.03 0.8434 0.3721 0.5025 0.0684 -0.150 -0.20 0.10 

0.15 0.03 0.8434 0.3721 0.5025 0.1026 -0.225 -0.30 0.15 

0.05 0.06 0.8410 0.4209 0.2275 0.0350 -0.075 -0.10 0.05 

0.10 0.06 0.8410 0.4209 0.2275 0.0699 -0.150 -0.20 0.10 

0.15 0.06 0.8410 0.4209 0.2275 0.1049 -0.225 -0.30 0.15 
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(c) With S = 0.06 

Figure A.4: The lockup premium for the DTMC with 7 G ^ 7s- 7 G = 0-6,75 = 0.4, 

7G = 0.557s = 0.45, and 'JG — Is = 0-5. 

less sensitive to 7 , 1 s , and Y D , but is sensitive to YQ, which can be regarded as a function 

of a, as illustrated in Figure A.6. 

A . 7 . 3 S e n s i t i v i t y of t h e P r e m i u m for a F i x e d L o c k u p P e r i o d 

In this section, we investigate how the lockup premium for a fixed lockup period depends 

on the three variables 5,j, and a. We consider n = 3 with the choice of parameters 

YS/CF — —1.5 and YD/a = —2.0. The result is helpful to estimate the lockup premium for a 

fixed lockup period when some of the three variables change. From Figure 2.9 in Chapter 

2, it is clear that the lockup premium increases as 5 decreases, 7 increases, or a increases. 
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Figure A.5: The lockup premium for the DTMC for a = 0.05,0.10, and 0.15. 

It turns out that the three-year lockup premium can be approximated reasonably well by a 

simple linear function of each variable separately, at least over a narrow range. 

Figure A.7 shows the three-year lockup premium as a function of a, 7, and 8 for the 

DTMC models. In this figure, we see how the three-year lockup premium depends on two of 

the three variables a, 7, and S while fixing the remaining one variable. For example, Figure 

A.7 (i) shows the change of the three-year lockup premium for 5 and 7 while fixing a as 

0.1. We observe the near-perfect linearity of the three-year lockup premium for a. We also 

observe that the concavity of the premium for 7 increases as 7 increases. Figures A.7 (i) 

and (ii) suggest that the three-year lockup premium is quite insensitive to 5, which implies 

that the effect of 8 on the lockup premium is relatively small. Figure A.7 (iii) and (iv) show 
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rr.G,*s for YQ in the range [0.05,0.15] nQ, JIS for Y in the range [-0.15,-0.10] 

Figure A.6: The steady-state probabilities ITG and irg as a function of 7 in the base case 

for values of YQ ranging from 0.05 (starting value, denoted by S) to 0.15 (ending value, 

denoted by E), Ys ranging from —0.15 to —0.10, and Yjr> ranging from —0.20 to —0.15. 

the three-year lockup premium for 5 = 0.03. To supplement that, Figure A.8 illustrates 

how the three-year lockup premium for different 7 and a changes with 5 = 0.00 and 0.06. 

We observe that the shape of the three-year lockup premium function does not change as 5 

changes. 

A.7.4 Estimating the Functional Form of the Three-year Lockup Pre­

mium 

So far, we have calculated the lockup premium for variables 7, a, and 8 with the DTMC 

model. Since we have calculated the premium as a function of three variables, it is then 

natural to consider a simple functional form to describe the premium. If the estimation 

can be done relatively easily, it is useful to approximate the premium with a closed-form 
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For 7 = 0.1 to 0.5, (iii) S = 0.00,0.03,0.06,0.07 with a = 0.1 (iv) a - 0.05,0.1,0.15,0.2,0.25 with <5 = 0.03 
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For a = 0.05 to 0.25, (v) 7 = 0.1,0.2,0.3,0.4,0.5 with <5 = 0.03 (vi) 5 = 0.00,0.03,0.06,0.07 with 7 = 0.5 

Figure A.7: The three-year lockup premium for the DTMC model with Ys = —1.5<J,YD = 

—2.0a. The lockup premium does not exist if q or r becomes negative. 

expression of three variables, denoted by ip(S,^,a). (Again, we fix Ys/a = —1.5 and 

YD/a = —2.0.) We may then understand the effect of these three variables more intuitively. 
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For 5 = 0.00, (i) 7 = 0.1,0.2,0.3, 0.4, 0.5 (ii) a = 0.05,0.1,0.15,0.2,0.25 

<jl J 1 i 1 ol • ' ' ' ' ' ' ' 
0 05 0.1 0.15 02 025 0.1 0.15 02 025 0.3 0.35 0.4 0.45 0.5 

For 5 = 0.06, (iii) a = 0.05,0.1,0.15,0.2,0.25 (iv) 7 = 0.1,0.2,0.3,0.4,0.5 

Figure A.8: The three-year lockup premium for the DTMC model with Yg = — 1.5<x, YD = 

-2 .0a . 

It is also easy to quickly estimate how the premium changes if the variables change. 

The three-year lockup period is interesting because this is the first year a fund starting 

in a good state may becomes dead in the DTMC model. Thus, we can see the effect of 

the death of a fund on the lockup premium. Furthermore, three years is a practical case to 

consider. Thus, we consider an estimation of three-year lockup premium as a closed form 

expression of 7, a, and S. However, the approximation also works for different lockup period 

and the choice of Y$/cr. (See the remark below.) 

Figure A.7 suggests that the three-year lockup premium is weakly concave function of 

7, linear function of a and relatively insensitive to 5. We thus try a simple product form 

of three variables with an exponent for each variable. Specifically, denoting the three-year 
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lockup premium as a function of S, 7, and a by tp^ (5,7, a), we consider the following simple 

candidate approximation: 

^(3) (<*, 7, *) « tff3) (5 ' 7, <r) = a <J6
7 V . (A. 17) 

Taking logarithms of both sides of (A. 17), it is straightforward to estimate the parameters 

a, 6, c, and d from the calculated three-year lockup-premium values with linear regression, 

because 

In V&) (5,7, a) = l n a + &ln<5 + c l n 7 + dln<7. (A.18) 

Since l i m ^ o ipf3^ = 00 when b < 0 and 0 when b > 0, which is not desirable for our 

estimation purpose, we have to restrict range of 5 away from 0. Thus, we restrict the range 

of 6 to [0.01.0.07]. 

It turns out that without further restricting the ranges of the variables <5,7 and <r, the 

candidate function V?3) (8,7, cr) approximates the three-year lockup premium reasonably 

well. For example, for 6 € [0.01,0.07], the linear regression of (A.18) approximates the 

three-year lockup premium by 

Vf3)(<J,7,<r) = 0-047 r 0 1 1 / 6 9 / 6 4 , 

with maximum error of 0.0036. Notice that the exponent to 5 is —0.11, which eventually 

makes lim,5_>oV'f3)((^7)0') — 00. Thus, we expect that as 5 approaches 0, e.g., for S >C 0.01, 

the estimation function will not approximate the three-year lockup premium in DTMC 

model well. Figure A.9 shows the estimation of the three-year lockup premium with the 

function obtained from the regression above for the selected ranges of variables. We observe 

that the estimation function approximates the three-year lockup premium reasonably well. 

If we further restrict the ranges of the variables such that 7 G [0.2,0.4], the maximum error 

reduces to 0.0004, which is only less than 11% of the three-year lockup-premium values in 

the DTMC model. 

We remark that the approximation of the fixed-year lockup premium in the DTMC 

model by a product function ipp(5,j,a) = a 8h^cad works reasonably well for the other 

lockup periods (n) and other choices of Yg/u- For example, the four-year lockup pre­

mium in the DTMC model is approximated by ^ 4 ) (<5 ,7 ,CT) = 0.03 ,5-0.20^,0.69^0.64 w i t h 
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maximum error of 0.0043. If we choose Ys/a = -1.0, Vf3) (<*, 7, *) = 0-06 <T°-207o.64CTo.72 

approximates the three-year lockup premium with maximum error of 0.0072, which can 

be reduced to 0.0024 if we restrict the range of 7, requiring that it be between 0.2 and 

0.4. The approximation also holds reasonably well if we change n and Ys/a at the same 

time, although the maximum error increases slightly. As before, for 5 € [0.01,0.07], if we 

choose Ys/a = —1.0, the four-year lockup premium in the DTMC model is approximated by 

V ,M^(^)7)(7) — 0.05 ^-O-2 6^-6 5^-7 3 with maximum error of 0.0084. Again, the error reduces 

to 0.0024 if we further restrict the range of 7, requiring that it be between 0.2 and 0.4. 
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Appendix B 

Appendix to Chapter 3 

B.l Introduction and Summary 

This appendix has nine more sections. In §B.2 we display plots of the sizes of the managed 

assets of the funds in our sample. In §B.3, we provide the relative-return distributions of 

hedge funds across 10 strategies in the TASS database from 2000-2005. It is observed that 

the relative-return distributions for some strategies are approximately normal, while others 

have high peaks or heavy tails, which is not fit by the normal distribution. In §B.4, we 

show how the relative-return distribution in the constant-persistence normal-noise model 

depends on the sample size of the simulation. We compare simulations with the sample size 

of the data to larger simulations with sample size of 106. 

We supplement the analysis of the other models in the remaining sections. In §B.5, we 

show how the beta-persistence model depends on the beta-distribution parameters a and 

(5. It is shown that the shape of the estimated relative-return distribution is insensitive to 

a and /?. In §B.6, we show that the heavy-tail and light-tail distributions behave differently 

in log-log scale. In §B.7, we show that the beta-persistence empirical-noise model provides 

a good fit the the data and reasonable estimates to the hitting probabilities. In §B.8, we 

show how the tails of the relative-return distribution in the constant-persistence stable-

noise model behave, depending on the parameter /3 in the stable distribution. It is observed 

that the estimated relative-return distribution fits the data reasonably well for fund-of-fund 

strategy when (3 = 0. In §B.9, we provide a fitting for long-short equity strategy, which 
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has the largest sample size in the data. We conclude that the beta-persistence normal-noise 

model fits the data well. Finally, in §B.10, we provide a fitting for the event-driven strategy 

whose relative-return distribution has heavy tails. It is observed that the beta-persistence 

t-noise model and constant-persistence stable-noise model provides a good fit to the data. 

B.2 The Values of Managed Assets 

As described in §3.4 of Chapter 3, we started by examining the TASS data. We followed the 

previous researchers, such as Boyson and Cooper (2004), in our data selection procedure. 

For each strategy, in order to avoid very small funds, which might have different charac­

teristics, we first removed all funds from the data for which the managed asset value never 

reaches our 25 million dollar threshold. For the fund-of-fund strategy, we first removed 407 

fund pairs from the data; that left the 986 fund pairs in our sample. (A pair is the relative 

annual returns for two successive years.) 

To further explore the data, we considered the distribution of the average asset values 

managed by the fund. In Figure B.l (a) below, we plot the histogram of the average 

managed asset value among the the 986 funds in the fund-of-fund strategy. These 986 

observations are taken only from the funds exceeding the 25 million dollar threshold. We 

see that the largest managed asset values are of order $108. We also show a corresponding 

log-log plot in Figure B.l (b), which shows that the size distribution has a heavy tail. 

We also measure the total value of asset managed by the larger and smaller funds (in 

terms of managed asset values) in Table B. l . We first study the total value of asset managed 

for all 986 returns observed for fund-of-fund strategy. Since the relative returns from 2000 

to 2004 are included at the same time for all 986 observations, asset values of some funds 

are counted multiple times for their life during the period. Thus, we also choose one specific 

year, namely, 2004, and take a snapshot of that year in terms of asset size such that we 

can see how the asset size of each fund, not the returns over the years, is distributed in one 

year. 

The table shows that top 10% funds constitute large portion of total asset values, up 

to 65%. It also shows that the percentage of total asset values in two methods are not 
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Figure B.l: Histogram and log-log plot of the value of managed assets for funds under the 

fund-of-fund strategy. 

significantly different. Although the 65% is not small, we believe that this is not an extreme 

value such that we need some other measure to analyze the relative returns under the same 

strategy. 
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Table B.l: Managed asset values for fund-of-fund strategy 

Ranking 

Top 1% 

Top 5% 

Top 10% 

Bottom 10% 

Bottom 5% 

Bottom 1% 

Total Managed Asset 

Managed asset 

3 3 % 

55% 

65% 

0.5% 

0 .1% 

0% 

$1 x 1011 

Manages asset for 2004 

38% 

58% 

67% 

1% 

0.2 % 

0% 

$2 x 1011 

B.3 Distribution of Relative Returns from the Data 

In this section, we carry out the analysis of Figure 3.1 in Chapter 3 for the other hedge-fund 

strategies. In particular, we display histograms of the relative returns within each of these 

strategies and provide Q-Q plots comparing the empirical distribution to the normal distri­

bution. It is pointed out by Lhabitant (2004), Tran (2006), Geman and Kharoubi (2003), 

Eling and Schuhmacher (2007), Kassberger and Kiesel (2006) that hedge fund returns or 

indexes have heavy-tails, which are not fitted by normal distribution. In contrast, although 

most returns do indeed show heavy tails, we find that relative returns within the global-

macro and emerging-market strategies can be fit to the normal distribution; see Figure 3.1 

in Chapter 3 and Figure B.2 below. (We omit dedicated-short-biased strategy since we only 

have 29 observations.) 
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QQ Plot of Sample Data versus Standard Norma! 

.5 _o.4 _o.3 -0.2 -0.1 D 0.1 0.2 0.3 0.4 0.5 
Annual relative returns Standard Normal Quantiles 

(a) Convertible (7 = 0.44) 

QQ Plot ot Sample Data versus Standard Normal 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 
Annual re la it ve returns Standard Normal Quantiles 

(b) Equity macro (7 = 0.09) 

Figure B.2: Relative-return distributions and Q-Q plots comparing the empirical distribu­

tion to the normal distribution for 10 strategies in TASS database from 2000-2004. 
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QQ Plot of Sample Data versus Standard Normal 

1 „I,J1 H J ii i.. 
-0.5 -0.4 -0.3 

Standard Normal Quantlles 

(c) Event driven (7 = 0.24) 

0 0 Plot of Sample Data versus Standard Normal 

-0.4 -0.3 -0.2 -0 .1 0 0.1 0.2 0.3 0.4 0.5 
Annual retartve returns Standard Normal Quantiles 

(d) Fixed income (7 = 0.29) 
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(e) Global macro (7 = 0.13) 

Figure B.2: (Continue) Relative-return distributions and Q-Q plots comparing the empirical 

distribution to the normal distribution for 10 strategies in TASS database from 2000-2004. 
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QQ Plot of Sample Data versus Standard Normal 

Standard Normal Ouantiles 

(f) Long-short equity (7 = 0.15) 

QQ Plot of Sample Data versus Standard Normal 

0.05 

• 0.04 

: 0.03 

...,I.Ji L.. 
-0.4 -0 .3 -0 .2 -0 .1 0 0.1 0.2 0.3 0.4 0.5 

Annual relaitve returns Standard Norma! Ouantiles 

managed future (7 — 0.20) 

QQ Plot of Sample Data versus Standard Normal 

Standard Normal Ouantiles 

(h) Others (7 = 0.48) 

Figure B.2: (Continue) Relative-return distributions and Q-Q plots comparing the empirical 

distribution to the normal distribution for 10 strategies in TASS database from 2000-2004. 
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The table below shows results for the Lilliefors test. It tests the hypothesis that the 

sample comes from a normal distribution. The two distributions with relatively high p-

values (greater that 0.05) from the Lilliefors test have distributions the look like the normal 

distribution in Figure B.2, both directly and in the Q-Q plot . 

Table B.2: Lilliefors test results with 95 % significance level 

Strategies 

Convertible 

Equity Macro 

Event Driven 

Fixed Income 

Global Macro 

Long-short Equity 

Managed Future 

Other 

Result 

Reject 

Reject 

Accept 

Reject 

Accept 

Reject 

Reject 

Reject 

p- value 

0.0001 

0.0071 

0.1204 

0.0424 

0.3002 

0.0001 

0.0021 

0.0001 

B.4 Constant-Persistence Normal-Noise Model Simulation 

In this section, we show how the relative-return distribution in the constant-persistence 

normal-noise model depends on the sample size of the simulation. Since the relative returns 

we have from the data is limited, when fitting the relative-return distribution, it might be 

helpful to compare the empirical distribution to the estimated distribution with the sample 

size of the data. Figure B.3 (a)-(c) illustrate estimated distributions, each with the same 

size of the data, 986, for the fund-of-fund strategy. We then do the same for the emerging-

market strategy in Figure B.3 (e)-(g) with sample size of 315. We also provide the estimated 

relative-return distribution with sample size of 106 in Fi gure B.3 (d) and (h) in order to 

see how the shape of the estimated relative-return distribution changes as the sample size 

increases. 
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-0.5 -0.4 -0.3 -0-2 -0.1 0 0.1 0.2 0.3 0.4 0.5 
Annual Relaitve Returns 

(a) 986 simulation of the model 

-0.5 -0.4 -0 .3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 
Annual Relaitve Returns 

(b) Relative-return distribution from 986 sam­

ples 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 02 0.3 0.4 0.5 
Annual Relaitve Returns 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 
Annual Relaitve Returns 

(c) Relative-return distribution from 986 sam-(d) Relative-return distribution from 106 sam­

ples pies 

Figure B.3: (a)(b)(c) The estimated relative-return distribution with the sample size of 986 

in the constant-persistence normal-noise model with 7 = 0.33, <7& = 0.0565 for fund-of-fund 

strategy, (d) The estimated relative-return distribution with the sample size of 106. 
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(e) 315 simulation of the model (f) 315 simulation of the model 
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(g) 315 simulation of the model 
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(h) 1,000,000 simulation of the model 

Figure B.3: (Continue) (e) (f) (g) The estimated relative-return distribution with the sample 

size of 315 in the constant-persistence normal-noise model with 7 = 0.36, o^ = 0.1797 for 

emerging-market strategy (h) The estimated relative-return distribution with the sample 

size of 106. 
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B.5 Beta-Persistence Model Simulations 

In this section, we illustrate how the beta-persistence model depends on the beta-distribution 

parameters a and ft. It is observed that the overall relative-return distribution predicted 

by the model does not depend much on beta-distribution parameters. See, Figure B.4 for 

the beta-persistence normal-noise model. The observation also holds for the other beta-

persistence models with t and mixture noise. 
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± 
(a) The beta-persistence normal-noise model with a = 0.03 and corre­

sponding beta PDF 

L A J 
(b) The beta-persistence normal-noise model with a = 10 and corre­

sponding beta PDF 

LAJ 
(c) The beta-persistence normal-noise model with a — 50 and correspond­

ing beta PDF 

Figure B.4: Simulation estimate of the relative-return distribution and the associated beta 

pdf from the beta-persistence normal-noise model for the fund-of-fund strategy with 7 = 

0.33, a = 0.0681 and (a) a = 0.03 and /3 = 0.06, (b) a = 10 and /3 = 20.30, (c) a = 50 and 

/3 = 101.51. 
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B.6 Log-Log Plots of Distr ibution Tails in Different Models 

In this section, we plots the distribution tails for the normal, t, and mixture noise model in 

order to show the differences in their tail behavior. All except the normal have heavy tails, 

which is shown as linear behavior for larger values (at the right in each plot) in Figure B.5. 
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log-log plot of left ts log-log plot ot right tail 

(a) 10,000 simulation of constant-persistence normal-noise model 

log-log plot ot left tail log-log plot of right tail 

(b) 10,000 simulation of constant-persistence t-noise model 

log-log plot of left tail log-tog plot of right tail 

(c) 10,000 simulation of beta-persistence mixed-noise model 

Figure B.5: Log-log plots of the estimated relative-return distributions with sample size 

of 104 in the (a) constant-persistence normal-noise model, (b) constant-persistence t-noise 

model, (c) constant-persistence mixed-noise model. 
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B.7 The Beta-Persistence Empirical-Noise Model 

To seek a still better fit to the data within the beta-persistence class of models, we can let 

Bn have the observed empirical distribution for Xn — ̂ Xn-i, using the estimated value of 7. 

This automatically gives Bn and its estimated variance a\. It now goes further to directly 

match the shape, but sacrifices the explicit parametric form. In order to simulate B following 

the same distribution of Bn obtained from the data, we construct distribution function of 

Bn numerically. This is done by splitting the support of relative returns, [—0.5,0.5] equally 

and cumulatively count the number of returns falling each interval, from left to the right. 

As a numerical example, we construct distribution function of Bn from the relative returns 

within fund-of-fund strategy. Given the distribution function, we can generate B using 

inverse transform method; we generate uniform random variable and find the inverse value 

of given distribution function numerically. Figure B.6 shows the distribution function of X 

based on the simulation of B constructed from empirically obtained Bn. As we see from 

the figure, the beta-persistence empirical-noise model also provides a good fit to the data. 
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Annual Relative Returns Data Quantiles 

(a) Relative-return distribution (b) Q-Q plot comparing the model to the data 

tofl-log plot of righl tail 

log-log plot of left tail 

A A A A A £ A A « * . 

A Empirical Data j 
Model Simulation j 

(c) Left-tail log-log plot (d) Right-tail log-log plot 

Figure B.6: Simulated samples from the beta-persistence empirical-noise model with 7 = 

0.33, a = 50, a = 0.0681 and the empirical relative-return distribution for the fund-of-fund 

strategy from the data. 
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Table B.3 below shows the hitting probabilities from the beta-persistence empirical-

noise model. It is observed that the maximum and minimum of 20 simulations of hitting 

probabilities cover the empirically observed hitting probabilities from the data. The large 

number (104) of simulation results in the fourth column of Table B.3 also suggests that the 

beta-persistence empirical-noise model provides reasonable estimates of the hitting proba­

bilities. 

Table B.3: Hitting probabilities of thresholds over a five-year period (2000-2004) 

Level1 data2 empirical-noise 

3 <x 

2 a 

1 a 

-1 a 

-2<T 

-3 a 

0.0326 

0.0761 

0.2363 

0.2391 

0.0542 

0.0326 

7V = 923 

[0,0.0652] 

[0.0217,0.1196] 

[0.1630,0.3261] 

[0.1413,0.2826] 

[0.0109,0.0870] 

[0,0.0543] 

N = 10,0004 

0.0313±0.0034 

0.0659±0.0049 

0.2226±0.0082 

0.2021±0.0079 

0.0477±0.0042 

0.0271±0.0032 

1. a = 0.0681, the observed standard deviation of the fund-of-fund relative returns. 

2. Number of funds that have ever hit the level for 2000-2004 divided by total 92 funds in 2000. 

3. Minimum and maximum of the probabilities from 20 simulations with sample size of 92 initially. 

4. 95 % confidence interval of hitting probability from simulation with sample size of 10,000 initially 
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B.8 Constant-Persistence Stable-Noise Model Simulations 

In this section, we show how the relative-return distribution in the constant-persistence 

stable-noise model depends on parameter /3 in the stable distribution. Figure B.7 shows 

Q-Q plots and log-log plots of the left and right tails of the estimated distributions for 

(3 = —0.2,-0.1,0, and 0.1. It is observed that the constant-persistence stable-noise model 

with j3 = —0.1 fits the Q-Q plot well whereas the left and right tails of the distribution are 

approximated well with (3 = 0.1. Overall, /3 = 0 fits both the Q-Q plot and the left and right 

tails relatively well at the same time. It is hard to find stable random variable parameters 

that can fit both Q-Q plot and log-log figures at the same time. It is because the shape 

of the stable distribution cannot match the observed distribution exactly. However, the 

constant-persistence stable-noise model still provides a reasonably good fit to the data with 

fewer parameters than the other models, such as the beta-persistence mixed-noise model. 
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Figure B.7: Q-Q plots and Log-log plots of left and right tails of the relative-return dis­

tributions from the constant-persistence stable-noise model with a = 1.6, k — 0.0029 for 

/3 = - 0 . 2 , - 0 . 1 , 0 , and 0.1. 
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log-tag pkj! as ngra lai 

(e) Constant-persistence normal-noise model with )3 = —0.2 

(f) Constant-persistence normal-noise model with /3 = — 0.1 

IcHHog piol of nghl tat 

(g) Constant-persistence normal-noise model with /3 = 0 

(h) Constant-persistence normal-noise model with /3 = 0.1 

Figure B.7: (Continued) Q-Q plots Log-log plots of left and right tails of the relative-return 

distributions from the constant-persistence stable-noise model with a = 1.6, k = 0.0029 for 

P = -0.2, -0.1,0, and 0.1. 
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B.9 Analysis of Relative Returns within the Long-Short Eq­

uity Strategy 

In this section, we fit the relative returns within the long-short equity strategy. Table 3.1 

in Chapter 3 shows that this strategy has the largest sample size. Thus it is natural to 

fit our SDE model to the data in this case. Although we observe relative large number of 

observations from the data for this strategy, we see that the relative returns does not have 

high performance persistence. 

The Q-Q plot of the relative returns in Figure B.2 (f) suggests that the distribution 

does not have heavy tails. That is also supported in the log-log plots of the distribution 

tails in Figure B.8 since both the left and right tails do not end with a linear line and 

instead decrease quickly in the right side of the Figure B.8 (c). Thus, we start from normal-

noise model to fit the data. As observed in Table 3.2 in Chapter 3, the ratio ajo\, from 

the data and model do not match. Thus, we use the beta-persistence normal-noise model 

first with a = 50. For given a = 0.1520 and 7 = 0.15 from the data, we calibrate other 

parameters /?, aa and a^, following §3.6 of Chapter 3. Figure B.8 (a) and (b) show the 

estimated relative-return distribution. It is observed from Figure B.8 (d) that the Q-Q plot 

of the model to the data is close to a linear line with slope 1. Thus, we conclude that 

the relative-return distribution is approximated well by the beta-persistence normal-noise 

model for the long-short equity strategy. 
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(d) Q-Q plot (simulated distribution to empiri­

cal one) 

Figure B.8: Relative returns simulated from the beta-persistence normal-noise model with 

a = 50, a — 0.1520, 7 = 0.15 for the long-short equity strategy. 
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B.10 Analysis of Relative Returns within the Event-Driven 

Strategy 

In this section, we analyze another single strategy whose relative-return distribution has 
heavy tails. In particular, we analyze the event-driven strategy since it has relative big 
sample size (533) and high persistence factor (7 = 0.24). The Q-Q plot in Figure B.9 shows 
that the relative-return distribution has heavier tails than a normal distribution. We thus 
proceed using our beta-persistence i-noise and constant-persistence stable-noise models to 
fit the data. 

QQ Plot of Sample Data versus Standard Normal 

Standard Normal Quantlles 

(a) Event-driven strategy (7 = 0.24) 

Figure B.9: Distribution of relative returns from event-driven strategy and Q-Q plot com­

paring the distribution to the normal distribution. 

B.10.1 Beta-Persistence i-Noise Model 

In this section, we test whether the beta-persistence i-noise model can fit the data for 
the event-driven strategy. Recall that in the beta-persistence t-noise model, once a is set, 
then the other parameter (3 in the beta random variable is determined to fit the mean 
(7 = 0.24). Just as we did for the fund-of-fund strategy, we set a = 50, so that the 
persistence random variable is relatively narrowly distributed around 7 = 0.24. We then 
set the degrees of freedom in the t random variable to fit the distribution of relative returns 
from the data. Another parameter k in the model is determined to fit the standard deviation 
of Xn (a = 0.1007). We find that v = 3.5 fits the distribution well. 

From Figure B.10, we observe that the quantiles in the Q-Q plot comparing the samples 
from the model to the data coincide reasonably well. We obtain p value of 0.1349 from 
Kolmogorov-Smirnov two sample test. Thus, we cannot reject the hypothesis that the 
simulated returns and empirical returns come from the same distribution. 
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Figure B.10: The beta-persistence t-noise model 104 number of simulation with a = 50, v 

3.5,7 = 0.24 comparing to the data for event-driven strategy. 

B . 1 0 . 2 C o n s t a n t - P e r s i s t e n c e S t a b l e - N o i s e M o d e l 

In this section, we test whether the constant-persistence stable-noise model provides a good 
fit the data. In order to test that , we measure the quantiles of Xn and Bn tha t directly 
come from Xn — 7 X n _ i , using previous estimate for the persistence factor 7. Table B.4 
shows that the ratios of quantiles from X and B are roughly equal to 1.3. We thus proceed 
the model fitting by assuming that c = 1.3. 

Given c— 1.3, we now compare Xn and cBn from the data for the event-driven strategy. 
Figure B . l l shows the histograms of Xn and cBn from the data, which look similar. We also 
conducted Kolmogorov-Smirnov two-sample test and obtained a p-value of 0.2834. Thus we 
cannot reject the hypothesis that these two sets of samples come from the same distribution. 
The Q-Q plot also shows that the quantiles from the distributions of the samples from the 
model and the data coincide with each other remarkably well. 

Figure B.12 shows that the constant-persistence stable-noise model fits the relative re­
turns within the event-driven strategy reasonably well with stable-distribution parameters 
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Table B.4: The Quantile Differences of Xn and Bn and Their Ratios 

Quantile Difference1 Xn Bn Ratio 2 

5 5 % - 4 5 % 0.0259 0.0207 1.2533 

6 0 % - 4 0 % 0.0460 0.0372 1.2378 

6 5 % - 3 5 % 0.0783 0.0578 1.3552 

7 0 % - 3 0 % 0.1012 0.0703 1.4396 

7 5 % - 2 5 % 0.1270 0.0921 1.3789 

7 o - 2 0 % 0.1580 0.1204 1.3132 

% - 1 5 % 0.1878 0.1587 1.1832 

9 0 % - 1 0 % 0.2935 0.2067 1.1587 

9 5 % - 5 % 0.3051 0.2876 1.0610 

1. Difference between two quantile values. 

2. Ratio: Quantile Difference for X /Quantile Difference for B. 

a = 1.75, /3 = —0.2 and K = 0.055. The Q-Q plots in the figure show that the quantiles of 
the distributions of the samples from the model and the data coincide well. Also, log-log 
plots of the left and right tails show that the tail behaviors of the distribution of the samples 
from the model approximate the distribution of the samples from the data reasonably well. 

We test if the c and a in Figure B.12 and 7 reasonably fit (3.33) in the main papr. 
We observe that ca = 1.58 and 1/(1 — ja) = 1.08 coincide only roughly. Nevertheless, in 
summary, we conclude that the fitting to a heavy-tailed distribution works reasonably well, 
given the limited data. 
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(a) Event-driven strategy Xn (b) Event-driven strategy cBn = c(Xn 

lXn-x) 

(c) Q-Q plot comparing X„ and cBn 

Figure B.ll: Xn and cBn from event-driven strategy and Q-Q plot comparing the distribu­

tion of Xn and cBn with c = 1.3 for event-driven strategy. 
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(a) Q-Q plot comparing the model to the data 

log-log p!oi ol teti tail log-log ptol ol righi laii 

(b) Log-log plot of left tails (c) Log-log plot of right tails 

Figure B.12: Event-driven strategy Q-Q plot comparing the distribution of 533 samples 

from the data and 104 samples from the constant-persistence stable-noise model with a = 

1.75,(5 = —0.2,7 = 0.24, k = 0.055 for event-driven strategy. 
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Appendix C 

Appendix to Chapter 4 

C.l Proof of Lemma 4.4.1 

Proof. We prove ip(c) < 7(c). Suppose, by a way of contradiction, ^(c) > 7(c). Suppose a 
seller has the ex post cost c and places a bid of ip(c) in the first-phase auction of the A-B 
model. If he becomes the winning bidder, then the final price outcome in the second-phase 
bargaining process will be 7(c) since 7(c) < ip{c). Since the probability density function / 
is strictly positive at c G (c,c), by perturbing his bid lower, the seller strictly increases the 
probability of his winning without affecting the outcome of the final price in the scenario 
in which he wins the auction phase. Thus, bidding more than 7(c) in the auction phase is 
not optimal for the seller. • 

C.2 Proof of Theorem 4.4.2 

Proof. To show that tp(c) = min{/3(c),7(c)} is a symmetric equilibrium, we suppose that 
all the other sellers except seller i G { 1 , 2 , . . . , n + 1} follow this strategy and show that 
seller i achieves the maximum expected profit by also following ip. Suppose c G [c, c] is the 
ex post cost of bidder i, and let b be his first-phase bid. By Lemma 4.4.1, b < 7(c). Also, it 
is clearly not optimal for seller i to place a bid lower than tp(c). Thus, ip{c) < b < 7(c). 

Let z be denned by i>(z) — b. Since ip is a strictly increasing and continuous function, z 
is well-defined. We refer to z as the implied cost associated with his bid b. From the above 
argument, ip(c) < 4>{z) < 7(c). Then, seller i's expected profit is given by the probability 
of winning multiplied by his expected profit, conditioned on winning the auction. The 
probability of winning the auction phase is G{z). If seller i wins the auction phase, then 
the price outcome of the bargaining phase is the minimum of his bid ijj{z) and 7(c), i.e., 
min{?/>(.z),7(c)} which is ip(z). Thus, seller z's expected profit is 

Uf(z,c) = G(z)(iP(z)-c) = G ( z ) ( m i n { / 3 ( z ) , 7 ( z ) } - c ) . (C.l) 



www.manaraa.com

APPENDIX C. APPENDIX TO CHAPTER 4 219 

We prove that , if ip satisfies Condition 1, Iif(z,c) is maximized at z = c, by showing that 
Hi{z,c) increases in z if z < c and decreases in z if z > c. We consider the following three 
cases. 

Case f3(z) < "f(z): Since ft and 7 intersect finitely many times, there exists e > 0 
such that /3(z') < 7(2') for any z' G (z — e,z + e). Thus, it follows tp(z') = /3(z') and 
Ui(z', c) = G (z') {/3(z') — c). Differentiating Hf(z, c) with respect to z in (z — e, z + e) when 
ip(z) = f3{z), we obtain 

§-znf(z,c) = - j ( # ( 2 ) - c ) + G ( z ) ^ ) . 

Since @(z) = E[Y\Y > z] follows from Lemma 4.3.1, it is straightforward to verify 

5«" = W)W,)-'h (a2) 

Combining these two equations, 

yznt(z,c) = g(z)(c-z). 

If z < c, then the above expression is positive, and perturbing z higher increases the 
expected profit. Otherwise, perturbing z lower increases the expected profit. 

Case 7(2) < P(z): As before, there exists e > 0 such that 7(2') < f3(z') for any z' G 
(z — e, z + e). Differentiating the expected profit with respect to z when ^(z) = 7(2), we 
obtain 

^nf(z,c) = -giz)Mz)-c) + G(z)\. (C.3) 

Note that by Lemma 4.4.1, we obtain 7(2;) = I/J(Z) < 7(c), which implies z < c. If z < c, 
then ^ (z ) = 7(2) and Condition 1 together imply that (C.3) is nonnegative since 

A > =—(7(z)-z) > = — ( 7 ( 2 ) - c ) , 
G(z) G(z) 

where the first inequality follows from Condition 1 and the second inequality follows from 
z < c. Thus, perturbing z higher weakly increases the expected profit. 

Case 7(2) = /3(z): There exists e > 0 such that either j3(z') < j(z') or /3(z') > j(z') for 
either z' G (z, z + e) or z' G (z — e, z). Then, apply the argument used in one of the two 
cases discussed above accordingly. 

If Condition 1 does not hold, then there exists c such that ip(c) = 7(c) < /3{c) and 
J j l l f (z, c)| _ < 0. Thus, bidding lower than 7(c) improves the profit of seller i and it 
follows that xp is not an equilibrium bidding strategy. 

a 
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C.3 Proof of Lemma 4.4.3 

Proof. To prove the lemma, suppose "f'{c) — A > /3'(c) for any c G [c,c]. Recall ip(c) = 
min{7(c),/3(c)}. Since 0(c) = 7(c) implies 7(c) < /3(c), 

where the equality follows from the definition of (3 in Lemma 4.3.1 (see (C.2)). Thus, from 
/3'(c) < A, we obtain (4.1), completing the proof. • 

C.4 Proof of Theorem 4.4.5 

Proof. Let ip be a continuous increasing function defined on [c,c]. First, if ip satisfies both 
(i) and (ii), then we can show that ip is an equilibrium by using the argument in the proof 
of Theorem 4.4.2. (Notice that equation (C.2) holds for any J3K function, and the only 
change is to replace /? with /?#, in the proof of Theorem 4.4.2.) 

Suppose now ip is a symmetric equilibrium function. We show that ip satisfies (i) and 
(ii). By Lemma 4.4.1, we obtain ip{c) < 7(c) for each c € [c,c], proving (i). For (ii), let 
c° G (c,c) such that ip{c°) < 7(c°). Let s = sup{c < c°\ip(c) = 7(c) or c = c} and 
t = inf{c > c°|0(c) = 7(c) or c = c}. By the continuity of both ip and 7, it follows 
that c° G (s,t). Let IIj(z, c) be seller i's expected profit, where seller i submits the bid 
of tp(z) when his cost is c, and all other bidders follow the bidding strategy ip. Since ip 
is an equilibrium function, Hi(z, c) for fixed c is maximized when z — c. Differentiating 
Ui(z,c) = G{z) (ip{z) — c) with respect to z in (s , i ) , we obtain 

^i(z,c) = - g(z)W(z) ~ c) + G(z)^(z) . 

It is straightforward to verify that the family of solutions for ip satisfying the above differ­
ential equation to be 0 at z = c is 

pK(c) = E[Y\Y >c}+ K 

G(c) 

parameterized by K. The choice of K is unique by the boundary condition at c°, namely 
PK(C°) = 0(c°)- Thus, ip(c) = Pxic) for c G [s,t], and we verify (ii). 

Furthermore, we prove the property of tp in the neighborhood of c. Recall from Section 
4.2 that we assumed v > c, which implies 7(c) > (3Q(JC) — c. By the first part of Theorem 
4.4.5, in the interval [aTO_i,am] where am = c, we have either tp(c) = (3K{C) for some K, or 
ip{c) = 7(c). In the former case, K cannot be positive since /3K(C) should be well-defined 
and finite for all c in the closed interval [aTO_i, am]. Also, K cannot be negative since PK{C) 
should be increasing in the neighborhood of c. Thus, we only need to consider /3o and 7. 

If 7(c) = /3o(c), then the above result shows that xp(c) = 7(c) = /3o(c) = c. We proceed 
with the case 7(c) > (3o(c) and will prove xp(c) — /3Q(C) in [ a m _ i , a m ] . Suppose by way of 
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contradiction that ip(c) = 7(c) in this interval. Then, since g(c) — n • (1 — F(c))n 1 / ( c ) and 

G(c) = (1 - F(c))n, we have 

By the assumption that / (c ) > 0 for all c € [c, c] where c < 00 (from Section 4.2), it 
follows that the above expression can be arbitrarily large as c —> c. In particular, the 
above expression exceeds A, which violates Condition 1. Thus, we conclude tp(c) = /?o(c) m 

[ a m _ i , a m ] . 
D 

C.5 Proof of Lemma 4.4.6 

Proof. We prove the lemma by contradiction. Suppose there exists c in the interior of T^ 

such that inequality (4.1) does not hold, i.e., ip(c) = 7(c) and 

A < 0-Mc)-c). (C.4) 
G(c) 

It follows that there exists e > 0 such that (c — e,c) C T^, and the above inequality still 
holds in this interval. Suppose that all the other bidders follow the bidding strategy ip. We 
proceed to show that seller i's expected profit is higher when he bids tp(c — e) compared to 
V'(c), which violates the definition of an equilibrium. 

Differentiating the expected profit of seller i with respect to z G (c — e, c), we obtain 
from (C.3) that 

|nf(,,c) _ BW . ( -«& { 7 W - e ) + A ) , 

which is negative by the choice of e above. Thus, IIi(c — e, c) < IIj(c, c), and it follows that 
•0 is not an equilibrium strategy. • 

C.6 Proof of Theorem 4.4.9 

Proof. From Lemma 4.4.1, recall ip(c) < 7(c) for any c G (c,c). Thus, if we can prove 
4>{c) < /3(c) for c G (c, c), then we obtain V'(c) < min{/?(c), 7(c)}, which implies the required 
result. Therefore, for the remainder of the proof, we prove ip(c) < (3{c) for c G (c,c). 

Consider the characterization of ip(c) given in the statement of Theorem 4.4.5. From 
the discussion following Lemma 4.4.6, we have ip(c) = Po(c) < 7(c). Let 

si = min{c G [c,c] \ /3o(c) < 7(c) for any c G [c,c]} . 

If si = c, then we must have ip(c) — (3(c), which proves the required result. If S\ > c, define 

s2 = min{c G [c,Si] \ (3o(c) > 7(c) for any c G [c, si]} . 
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Then, from the continuity of ifi and the monotonicity of fix in K, it follows that, for any 
c G [s2,sx], we have tp(c) = 7(c) or ip(c) = PK{C) for some K < 0. If S2 = c, then the 
required result holds. Note that 7(c) = (3Q{C) in the interval \s\, c]. Thus, if si = c, then we 
obtain the required result. Otherwise, we proceed by assuming that s\ > c. Define 

S2 — min{c G [c, si] | ^>(c) < A)(c) for any c G [c, si]} . 

If S2 = c holds, we obtain the required result; thus, we proceed by assuming otherwise, i.e., 
S2 > c. Then, there exists s° < S2 sufficiently close to S2 such that ip(c) = 7(c) > (3o(c) and 
PQ(C) > 7'(c) = A in the interval [s°,S2). We obtain 

which is contrary to Condition 1. Thus, we conclude that S2 = c. D 

C.7 Proof of Theorem 4.4.10 

Proof. From the remarks following Theorem 4.4.5, we obtain tp(l) = 1 . Thus, by applying 
Theorem 4.4.5, the right-most segment is the /3o segment; more precisely, let s = inf{c G 
[0,1] I /30(c) < 7(c) or c = 0 }. Then, ip(c) = /?0(c) for all c G [s, 1]. Since s = 0 implies 
that the statement of the theorem holds, we proceed by assuming s > 0. Then, it is easy 
to verify that if K > 0, PK(C) > (3Q(C) > 7(c) in [0, s), implying that J3K and 7 do not 
intersect in [0, s); thus, /3K does not specify any of the segments. If K < 0, then /3K crosses 
7 at most once at [0,5], in which case, it crosses from above to below (not from below to 
above). Therefore, because of the constraint tp(c) < 7(c), we cannot construct a continuous 
increasing function %jj satisfying ip(c) = /3K{C) < 7(c) and ip(c) = /3R-(C) < 7(c) where 
0 < c < c < 1. Thus, /3K does not specify any of the segments. • 

C.8 Proof of Lemma 4.4.13 

Proof. To derive the optimal reserve price r*AB in the first price A-B model, we calculate 
the expected profit of the buyer with the reserve price r and maximize her expected profit 
with respect to r. The expected profit of the buyer in the first price A-B model with a 
reserve price r is 

^AB = (l-(l-F(r))n+1).v-(n + l)-jyr(c)G(c)f(c)dc. 

Differentiating the expected profit with respect to r yields, 

J ^ ; = {n + i).G(r)-f(r).(v-r)-(n+l)-jy(c)-f(c)-^(c)dc. 
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Since ipr(c) — min{/? r(c),7(c)}, differentiating tpr with respect to r gives 

£*-<«> 5 , _| :7(c) = 0 i f V r ( c ) = 7 ( c ) . 

Substituting this into the above differentiation of the expected profit, we have 

/ ( r ) . {v _ r) _ r /{^(c) < 7 ( c ) } . / ( c ) dc 
J c 

^ A B = ( n + l ) - G ( r ) 

Note that the first order condition implies dUAB/dr = 0. Since r < c and G(r) is strictly-
positive for any r £ [c, c), we obtain 

f(r) • (v - r)-Jri{(Sr(c)< 7 (c)}- / (c ) dc = 0 , 

as required. • 

C.9 Proof of Theorem 4.4.17 

Proof. Suppose that seller i's ea; posi cost is c. We compare the payment received by seller 
i in the first price and the second price A-B models. Since the first-phase bidding functions 
in Theorems 4.4.10 and 4.4.16 are symmetric and increasing, seller i wins the auction phase 
if c < Cj for each j ^ i. Otherwise, seller i does not receive any payment from the buyer. 

We compare the payments received by seller i given that he wins the auction phase of 
the A-B model, i.e., Y > c. Let Pl(c,Y) and Pf{c,Y) denote these quantities in the first 
price and the second price A-B models, respectively. (The superscript indicates the first 
price or the second price auction.) Let tp1 and ip2 denote the equilibrium bidding strategy 
given in Theorems 4.4.10 and 4.4.16, respectively. Then, 

Pl(c,Y) = min{7(c),/3(c)} and P?{c,Y) = m i n { 7 ( c ) , y } . 

Let m\(c) denote the ex post conditional expected revenue received by seller i when his 
realized cost is c, i.e., the expected value of P}(c,Y) where the expectation is taken for all 
values of Y satisfying Y > c. Similarly, define mf(c). Then, 

mj(c) = min{7(c),/3(c)} = min{7(c),E[F | Y > c]} and 

mf(c) = E[min{7(c) , r} \ Y > c]. 

Observe that min{7(c),y} is a concave function with respect to y. We apply Jensen's 
Inequality to this function for the conditional distribution [Y\Y > c], and obtain m\(c) > 

mf(c). Since the ex post expected revenue received by seller i is higher in the first price 
A-B model, the buyer's expected profit is lower in the first price A-B model. • 
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CIO Proof of Theorem 4.5.1 

Proof. From the discussion preceding the statement of this theorem, it is easy to verify that 
the buyer's strategy is the best response to the sellers' bidding strategy, which is symmetric 
and increasing. 

We now consider the seller i's best response given that the buyer and all the other sellers 
follow the strategy given in the statement. Suppose that seller i has the cost of Cj and bids 
bi in the first phase. Since tp is an increasing function, there exists z such that tp(z) = b{. 
Also, from Lemma 4.4.1, we have ip(c) < ip(z) < j(ci). Without loss of generality, suppose 
that i = n + 1, and that the other sellers j e { 1 , . . . , n) are indexed in an increasing order 
of bj. Since bj — ip(cj) = min{P(cj),-y(cj)} for j £ { 1 , . . . , n } , sellers other than n + 1 are 
indexed in an increasing order of tp(cj), and also in an increasing order of Cj. 

Thus, seller i = n + 1 is one of m sellers selected in the first phase if and only if 
min{6i,7(c;)} < ip(cm) (assuming no ties). Since bi = tp(z) < 7 (CJ) , this condition is 
equivalent to ip(z) < tp{cm). Furthermore, seller i wins in the second phase if and only 
if bi = ^{z) < min{V>(Cj),7(cj)} = ip{cj) for each j = l , . . . , m . In summary, seller i is 
selected if and only if z < c\. In the case that seller i wins, the final price is t/)(z) and his 
profit is ip(z) — Ci. Then we obtain (C.l) where c is replaced with Cj and the remainder of 
the proof is similar to the proof of Theorem 4.4.2 subsequent to (C.l) . (The only change is 
to replace c with Q throughout.) • 
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Appendix D 

Appendix for Chapter 5 

D . l Proof of Lemma 5.3.1 

Proof. Part (a) is obtained by differentiating UB(z,p) in (5.4) with respect to p and setting 
it to zero. 

Now, for (b), by substituting the expression of pB(z) into (5.4) and using the identity 
/ti — z = @(z) — A(z), we obtain 

UB(z,pB(z)) = y(pB(z))l(»-®(z))(pB(z)-c)-cA(z)} 

= ^rj-y(pB(z))z (D.i) 

= 6ZT« B ( Z ) ' <D-2) 

where the last equality follows from the definition of z, i.e., qB(z) = y(pB(z)) • z. Since 
e has the IGFR property and b > 0, Wang et al. (2004) have shown that tyB(z,p(z)) is 
quasi-concave in z, and that the value of z satisfying dHB(z,p(z))/dz = 0 is unique, which 
is denoted by zB. 

Prom the expression (D.l), it is easy to see that the optimal solution zB is independent 
of c, i.e., zB A. c. Now, the first part (a) implies pB oc c. Then, from qB(z) = y{pB(z)) • z 
and (D.2), we obtain qB oc c~b and HB* oc c~(b~l>, respectively. • 

D.2 Proof of Lemma 5.3.2 

Proof. The first two parts follow directly from the definition of 6(7) and Lemma 5.3.1. 
The last part follows from zB JL c in Lemma 5.3.1 since both UR(z,p) and HB(z,p) are 
essentially the same price-setting newsvendor problem where the only difference lies in the 
cost parameter. D 
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D.3 Proof of Lemma 5.3.3 

Proof, (a) From Lemma 5.3.2. there exists K independent of 7 such that 

UM(zR,pR) = y(pR) • zR • (7 - 1) • cM = K • c ( 7 ) - b • (7 - 1) • cM . 

Differentiating it with respect to 7, we obtain 

dUM(zR,pR) = K_cM,5{ir{b+l)[_{b_1ycM.1+{cR + b.cM)] 

Since c(7)~(b + 1 ' > 0, it is clear that dHM (zR, pR) / dj changes the sign only once from 
positive to negative at 7 — 7 ^ --- - .-•- .-

(b) From (D.2) and (5.7), we have 

II** = | * 4 •«(**), and 
o — l 

UM(zR,pR) = q(zR)-(7-l).c
M . 

By dividing the first equation by the second equation, we obtain the required result, 
(c) Rewriting 11^* and TlM(pR, zR), we have 

n - = y^(,)zR, 

UM(pR,zR) = y(pR)zR(c(7)-c), 

TRU
R* + TMnM(pR,zR) = y ^ ^ [ ( r R + (b-l)rM)c(1)-(b~l)TMc]. 

Using the fact that zR is independent of c(j) and pR oc 6(7), we have 

TRUR* + TMUM(pR,ZR) = Kc(1)-
b[(TR+(b-l)TM)c(1)-(b-l)TMc), 

where K is all the terms that are independent of c(j). Differentiating the above equation 

yields 

d{rRUR*+rMUM(pR,zR)) = KcMd{r(iH-i)riTR + ib_1)TM)£{) + brMci 
d'j 

Thus the total after-tax profit is maximized when 

brM'+(TM -TR)CR/CM 

7 = TR + (b-l)rM 

It is then immediate to verify that the total-after tax profit is either quasi-concave with 
respect to 7 (7 > 1) if TR > TM or decreasing if rR < rM. • 
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D.4 Proof of Lemma 5.3.4 

Proof. We have already observed that the constraint HM(z,p) > 0 is always satisfied. We 
consider the constraint HR(z,p) > 0. Prom the definition of UR(z,p) in (5.6) and the 
identify JJL — z = Q(z) — A(z), algebraic simplification shows that IiR(z,p) > 0 is equivalent 
to 

P > c(j) 
M-e(*) 

First, we consider the optimal price pR(z) for any fixed z. Without the above constraint, 
the optimal choice of price p that maximizes Hc(z,p) for given z would have been 

b z 
P = 7 7-c(7) M-e(*) ' 

by following the analysis of Lemma 5.3.1. This price would be optimal provided that p = p 

satisfies the above constraint, i.e., [b/(b — 1)] • c(j) > £(7). This condition holds if and only 
if, by algebraic manipulation involving (5.5) and (5.9), 

7 - 1 > 
cR + cM 

(brM - TR)CM 

Note that this condition does not depend on the value of z. The proof of zc = zB is similar 
to the proof of Lemma 5.3.2. 

Otherwise, we have p < [b/(b — 1)] • £(7) • z/(/x — @{z)), and also [b/(b — 1)] • 6(7) < 0(7). 
In this case, Hc(z,p) is decreasing in p within the interval of p > p since 

<9IIC v(v) 

Thus, the optimal feasible price for fixed z is pc(z) = £(7) • z/(p, — @(z)). Then, similar to 
(D.l), we derive 

Uc(z,pc(z)) = y(pc(z))[{pc(z)-c(7))(p-@(z))-c^)A(z)} 

= [ch)~c(7)]-y(pC(z))-z. 

Note that this expression is a constant multiple of UB(z,pB(z)) in (D.l) , and we conclude 
zc = zB. D 

D.5 Proof of Theorem 5.3.6 

Recall that [d,d] is the support of e. Let I = ini{z > d : X(z) > 0}. 

Lemma D.5 .1 . There exists z € [d,d] such that X(z) > 0 for z < z and X(z) < 0 for 

z> z. Also, G{z) is strictly decreasing in \d,z\, and G(d) = 1. 
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Proof. Recall G{z) = [X'(z)-z]/X(z), and X(z) = /i-e(z)-/3z where @{z) = E[(e-z)+]. 
Let F and / denote the cumulative density function and the probability density function 
of e, respectively. Then, 

X'(z) = 1 - /? - F(z) and X"{z) = - f(z) . (D.3) 

Thus, X is concave in z. Since X(d) = \x — (/x — d) — (3 • d = (1 — (3) • d > 0, it follows that 
z satisfying the condition in the statement of the lemma exists. 

We first claim that G(z) < 1 for any z £ [d,z]. To see this claim, observe 

i _ r( \ = 1 - X'{Z)'Z = 1 _ z-nz)z-Pz = X{z)-X'{z)-z 
1 ' X{z) ii - Q(z) - /3z X(z) 

Clearly, X{z) = // - &(z) -/3z>0. Also, 

X(z)-X'(z)-z = \/i-e(z)-Pz]-[z-F(z)z-Pz) 

= »-e(z)-(l-F(z))-z 

= E[e] - E[(e - z) • l[e > z\] -E[z-l[e> z}} 

= E[e • l[e < z]] > 0. (D.4) 

Thus, we obtain 1 — G{z) > 0, proving the claim. Since the above expression is 0 at z = d, 

we also obtain that G(d) = 1. 
Differentiating G(z) with respect to z, we have 

[-f(z)z + X'(z)]X(z) - X'(s)*[( l -13)- F(z)} 
G{z) ~ xW 

Then, since z I d, we obtain limz,y G'(.z) < 0. 
We now show G(z) is strictly decreasing by contradiction. If G is not decreasing, then 

by the continuity of G and the above claim, there exist z\,z2 € (d,z\ such that z\ < z2, 
G{z\) > G(z2), and G'{z\) < 0 < G\z2). The derivative condition implies 

(1 _ G{zx)) (i - _ 4 _ ^ _ Jim. < o < a - G{Z2)) (i- * ^ Z2f{Z2) 

l-F(Zl)J l - F ( z i ) - v v " V 1 - F ( « 2 ) / 1 - ^ 2 

Here, since the rightmost expression is positive, we have 13/(1 — F(z2)) < 1. Then, by the 
increasing property of F, it follows that 1 - 0/(1 - F(zi)) > 1 - 13/(1 - F(z2)) > 0. By 
the increasing generalized failure rate (IGFR) property of e, the above inequality leads to 
contradiction with G(z\) > G(z2). • 

Proof of Theorem 5.3.6. For X(z) > 0, for a given z, from (5.14), we find that the optimal 
price p for a given z satisfies 
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Plugging pR(z) to I I R , we have 

UR(z,pR(z)) = y(P
R(z))-

CRZ 

b - l 

„R 

b-l 
•qR(z), (D.7) 

where qR(z) — y(pR(z)) • z. From the definition of y(p) = ap b and (D.6), we get -j-y(p) = 

-by(p)/p, and 

£-"« = »-i 
6CE X(z) - 2 • X'(z) _ pR{z) ( ZX'(Z) pR{z) 

(1 - G [ » ) 

We note that, by Lemma D.5.1, the above expression is nonnegative, and pR(z) is increasing 

m z. 
Differentiating (D.7) with respect to z, we obtain 

dUR(z,pR(z)) „R 

dz 

d d 
y(pR{z)) + z • ̂ y{p) • -^PR(z) 

b-l 

^ y ( p * ( * ) ) [ l - 6 + 6.G(*)] 

y(pR(z)) 
be .R 

b-l 
G{z) 

b-l 

By Lemma D.5.1, this expression is strictly increasing in z, changes sign from positive to 
negative only once. Thus, IlR(z,pR{z)) is quasi-concave in z. If there exists z satisfying 
G(z) = (b — l ) /6 , then such z is the unique maximizer. Otherwise, it can be shown that 
TlR(z,pR(z)) is maximized when z — d. • 

D.6 Proof of Theorem 5.3.7 

(a) We denote the dependence of various functions on (3 explicit in our notation. Recall 
G(z\(3) = \£X(z\f3) • z]/X{z\P), and X(z\p) = n - Q(z) - /3z where &(z) = E[(e - z)+). 
Since 

X{z\P) = n - e{z) - @z and A [X(z\p) • z\ = z - pz - zF{z) , 

we obtain 

d/3 
X(z\fi) and -— 

dz 
[X(z\/3) • z] 

Then, 

wGm = £ £X(z\P)-z 
X(z\p) 

[X(z\fi) - £X(z\P) • z] • (-z) 

X(z\/3)2 

X(z\P) • (-z) - [£X(z\/3) • z] • (-z) 

X{zW 

< 0 
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where the last inequality follows from (D.4). Thus G(z\/3) is decreasing in /3. Since G is 
also decreasing in z, the value of zR satisfying G{zR) = (b — l)/6 decreases in /3. 

(b) By differentiating (5.10) with respect to f3 to obtain 

dUR(z,p\/3) , . . n 

— - Q - Q — = -P• y(p) • z < ° > 

for any z and p. Thus, it follows that m.axZ}P HR(z,p\(3) is decreasing in /3. 
(c) Prom (5.15), 

UR(zR,pR(zR)) = ^ - s W 

Since the left-hand-side expression decreases in (3 by part (c), qR(zR) also decreases in z^. 
(d) For any z, pR(z) satisfies dTLR(z,pR(z))/dp = 0 in (5.14). Thus, 

pu(z) = 
(b-l)X(z) 

Now, since zR satisfies G(zR) — (b — l)/b where G(z) = X'(z) • z/X(z), we have 

zR _ 6 - 1 1 

X(zR) ~ b ' X'{zR) ' 

Thus, from (D.3), it follows 

1 rR pH(zH) = <? 
X'(zR) 1-P- F(zR) 

Now, in order to consider the dependence of zR on /?, we use the notation zR for given /3. 
We obtain 

dpR{zR) d cR RdX'(4) 1 
= — c d{3 d/3X'(zR) d(3 X'(zR)2 

CR / dzR\ C
R (b-l)f(zR)zR-X'(zR) 

X'(zRr[ nZ^dp) X'{zRY -bf{zR)zR + X'{zR) ' 

where dzR/d/3 is derived from the fact that dG(zR\/3)/d/3 = 0. Similar to (D.8), we have 

9G{z\P) 

dz X(z 
{-f(zR)zR + X'(zR)(l-G(zR))) 

1 ' f(zR)zR + X'(zR)-\ , 

and 

dG(zR\f3) zR
 R _ zR 

dp - ~X{zJ)[~l + G{Ze)) ~ bxjzj] 
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Therefore, 

dG(z*\P) 

dp 

dz[ 
dp 

9G{z$\P) dG(z\p) 
d(3 dz 

dzRp 
dp 

txMrM4)Vn#>'f+X'l*)l)Tv ~ °-+ 
VJ? 

-bf(zR)zR + X'(zR) ' 

Since we know that dzf/dfi < 0, we know that -bf(zfi)zfi+X'(zg) < 0. Thus, dpK(zft)/d(3 > 
zp)zp 0 if (6 - l)f{zf)z§ - X'(zR) > 0. 

D.7 Proof of Theorem 5.3.8 

Proposi t ion D.7 .1 . For any positive numbers k, c and c , 

c- i -
CR + C M 

< k . 

Proof. We first observe that both sides of the desired inequality approaches 0 as A; J, 0. 
Thus, it suffices to show that their derivatives satisfy the inequality, i.e., 

,R 

„M 

rJt 

CR + C ,M 
In 

„R 

CR + c j ! M / — 
< 1 . 

In fact, we will show a stronger result 

r-R / 

oM In 
\cR + cM) < 1 , 

for any positive cR and cM. To show the above inequality, we fix cM and show that (i) the 
limit of the left-side expression as cR —> oo is 1, and (ii) the left-side expression is increasing 

m c 
JR. 

To prove (i), we use l'Hopital's rule to obtain 

In 
lim 

\CR+CM J 

rM lnR 

c"-+cn 

l i m • 
(cR+cM)2 ,Jt 

. . . . CM/CR c*-Too CM/CR2 

To prove (ii), we take the derivative with respect to cR, 

lim 
R^ rR 4- rM 

c"-—• oo C T C 
= 1. 

dcR 

Ji 

M TF In 
CR + CM CR + CM • 

The nonnegativity of this expression follows from the following Taylor expression: 

•In 
JR 

CR + CM 
= - In 1 

M 

CR + CM 

Thus, we complete the required proof. 

oo 

t—> n. 
n = l 

M 

n \cK + c „M 

M 
> 

CR + CM 

D 
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Proof of Theorem 5.3.8. Set ft = cM/c. In the deterministic model, the optimal price under 

the resale-price method is p = bcR/[{\ — /?)(& — 1)]. Then, 

ilRP 
c
R\b a n-i^-1 

b V bcR
 t 

Similarly, the optimal price under the cost-plus method is p = b(cR + 7c M ) / ( 6 — 1) and 

6 - 1 
n, 

R* 
CP R -L ~,nM\ b \b{cR + 7C 

6-1 

To find the value of the appropriate markup parameter 7, we equate the above expression 
to H^p: 

R\ b 

b V *>cR 

where £(7) = cR + ^cM. Then, 7 satisfies 

b - n 6 - 1 _ a / b - n 6 " 1 

\bc(l)J 

0(7) 
r.R 

and 7 — 1 = 
nM 

J>\ b 

, f l 

Now, we compare ^CP(PCP)
 anc^ ^Rp(Pflp)- From the above analysis, the condition 

^CP(PCP) — nj^p(Pilp) is equivalent to each of the following inequalities: 

(7 - 1) • cM • a < 
.R\b~l 

• a • 

( 6 - 1 ) fc-i 

( 6 - c R\b 

CRCM 

( 7 - ! . ) ( & - l j 
£(7) * * 

,6 \ P T 

, i i 
— C ( 6 - 1 ) 

,H >-x < ! 

,b ' 

Simplifying the above inequality, it is equivalent to 

~R 

rM 

rR\ 6-1 
< 

6 - 1 ' 

which holds by an application of Proposition D.7.1. • 


